Denoising of BOTDR Dynamic Strain Measurement Using Convolutional Neural Networks.

Sensors (Basel)

Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA.

Published: February 2023

The Brillouin optical time domain reflectometry (BOTDR) system measures the distributed strain and temperature information along the optic fibre by detecting the Brillouin gain spectra (BGS) and finding the Brillouin frequency shift profiles. By introducing small gain stimulated Brillouin scattering (SBS), dynamic measurement using BOTDR can be realized, but the performance is limited due to the noise of the detected information. An image denoising method using the convolutional neural network (CNN) is applied to the derived Brillouin gain spectrum images to enhance the performance of the Brillouin frequency shift detection and the strain vibration measurement of the BOTDR system. By reducing the noise of the BGS images along the length of the fibre under test with different network depths and epoch numbers, smaller frequency uncertainties are obtained, and the sine-fitting R-squared values of the detected strain vibration profiles are also higher. The Brillouin frequency uncertainty is improved by 24% and the sine-fitting R-squared value of the obtained strain vibration profile is enhanced to 0.739, with eight layers of total depth and 200 epochs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964236PMC
http://dx.doi.org/10.3390/s23041764DOI Listing

Publication Analysis

Top Keywords

brillouin frequency
12
strain vibration
12
convolutional neural
8
botdr system
8
brillouin gain
8
frequency shift
8
measurement botdr
8
sine-fitting r-squared
8
brillouin
7
strain
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!