The present study analyzes (theoretically and experimentally) a drug release process from nanoparticles (polymeric nanocapsules and liposomes). This process is functionalized on the surface with an aptamer. These types of drug release processes can also be included in cream-type formulations. The obtained cream ensures the active targeting of tumor epithelial cells, in the case of skin cancer, because it can be easily administered to the skin by spreading, thus avoiding side effects caused by the toxicity of the drug to healthy cells, increasing both patient compliance and the effectiveness of the treatment. The process of obtaining these formulations is a simple one, easy to use and highly reproductible. The theoretical model, based on the multifractal tunnel effect within the Scale Relativity Theory, considers the system as a complex one. In this model, complexity is replaced with system multifractality, quantified in physical quantities as multifractal dimensions and multifractal functions. The main advantage of this approach consists in the fact that it allows us to obtain information on system behavior at a microscopic level and to evaluate microscopic characteristics of the system, such as intrinsic transparences of the drug molecules, multifractal constants as indicators of the system's complexity, the frequency of interactions within the system and the energy ratio between potential barrier energy and the energy of drug molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962169PMC
http://dx.doi.org/10.3390/polym15041018DOI Listing

Publication Analysis

Top Keywords

drug release
12
nanoparticles polymeric
8
polymeric nanocapsules
8
nanocapsules liposomes
8
drug molecules
8
drug
6
multifractal
5
system
5
release nanoparticles
4
liposomes mimed
4

Similar Publications

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

Rapamycin analogs are approved by the FDA for breast and renal cancer treatment. Hence, the possibility of nanoparticle-mediated delivery of Rapamycin could be examined. In the present study, PEGylated Gold-core shell iron oxide nanoparticles were used for the targeted delivery of Rapamycin, and R-Au-IONPs were formulated.

View Article and Find Full Text PDF

Tumor immunotherapy, modulating innate and adaptive immunity, has become an important therapeutic strategy. However, the tumor immune microenvironment's (TIME) complexity and heterogeneity challenge tumor immunotherapy. Hydrogel is a hydrophilic three-dimensional (3D) mesh structure with good biocompatibility and drug release control, which is widely used in drug delivery, agriculture, industry, etc.

View Article and Find Full Text PDF

Application of Nanomaterials Targeting Immune Cells in the Treatment of Chronic Inflammation.

Int J Nanomedicine

December 2024

Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.

Chronic inflammation is a common characteristic of all kinds of diseases, including autoimmune diseases, metabolic diseases, and tumors. It is distinguished by the presence of low concentrations of inflammatory factors stimulating the body for an extended period, resulting in a persistent state of infection. This condition is manifested by the aggregation and infiltration of mononuclear cells, lymphocytes, and other immune cells, leading to tissue hyperplasia and lesions.

View Article and Find Full Text PDF

Prodrug-based nanoassemblies are promising platforms for cancer therapy. Prodrugs typically consist of three main components: drug modules, intelligent response modules, and modification modules. However, the available modification modules are usually hydrophobic aliphatic side chains, which affect the activation efficiency of the prodrugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!