In order to yield more Co(II), 2,6-diaminopyridine (DAP) was polymerized with 4,4-methylene diphenyl diisocyanates (MDI) in the presence of Co(II) to obtain a Co-complexed polyurea (Co-PUr). The obtained Co-PUr was calcined to become Co, N-doped carbon (Co-N-C) as the cathode catalyst of an anion exchange membrane fuel cell (AEMFC). High-resolution transmission electron microscopy (HR-TEM) of Co-N-C indicated many Co-Nx (Co covalent bonding with several nitrogen) units in the Co-N-C matrix. X-ray diffraction patterns showed that carbon and cobalt crystallized in the Co-N-C catalysts. The Raman spectra showed that the carbon matrix of Co-N-C became ordered with increased calcination temperature. The surface area (dominated by micropores) of Co-N-Cs also increased with the calcination temperature. The non-precious Co-N-C demonstrated comparable electrochemical properties (oxygen reduction reaction: ORR) to commercial precious Pt/C, such as high on-set and half-wave voltages, high limited reduction current density, and lower Tafel slope. The number of electrons transferred in the cathode was close to four, indicating complete ORR. The max. power density (P) of the single cell with the Co-N-C cathode catalyst demonstrated a high value of 227.7 mWcm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965045 | PMC |
http://dx.doi.org/10.3390/polym15040915 | DOI Listing |
Cytotherapy
November 2024
Institute of Immunology and Immunotherapy, College of Medicine and Health, University of Birmingham, Birmingham, UK. Electronic address:
Background Aims: Extracellular vesicles (EVs) have gained traction as potential cell-free therapeutic candidates. Development of purification methods that are scalable and robust is a major focus of EV research. Yet there is still little in the literature that evaluates purification methods against potency of the EV product.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, United States.
Metal ions are essential for all life. In microbial cells, potassium (K) is the most abundant cation and plays a key role in maintaining osmotic balance. Magnesium (Mg) is the dominant divalent cation and is required for nucleic acid structure and as an enzyme cofactor.
View Article and Find Full Text PDFJ Contam Hydrol
December 2024
Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht 41635-1314, Iran.
Microbially induced calcite precipitation (MICP) while neutralizing soil pH, can lead to pore clogging which in turn may reduce bacteria transport. This study aimed to evaluate the effectiveness of the MICP process for E. coli filtration in two acidic soils.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.
Monitoring subcellular organelle dynamics in real time and precisely assessing membrane heterogeneity in living cells are very important for studying fundamental biological mechanisms and gaining a comprehensive understanding of cellular processes. However, there remains a shortage of effective tools for these purposes. Herein, we propose a strategy to develop the exchangeable water-sensing probeAPBD for time-lapse imaging of dynamics in cellular membrane-bound organelle morphology with structured illumination microscopy at the nanoscale.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Texas A&M University, Chemistry, UNITED STATES OF AMERICA.
The functionalization of pyridines at positions remote to the N-atom remains an outstanding problem in organic synthesis. The inherent challenges associated with overriding the influence of the embedded N-atom within pyridines was overcome using n-butylsodium, which provided an avenue to deprotonate and functionalize the C4-position over traditionally observed addition products that are formed with organolithium bases. In this work, we show that freshly generated 4-sodiopyrdines could undergo transition metal free alkylation reactions directly with a variety of primary alkyl halides bearing diverse functional groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!