A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification and classification of pathology and artifacts for human intracranial cognitive research. | LitMetric

Identification and classification of pathology and artifacts for human intracranial cognitive research.

Neuroimage

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, United States; Wilder Center for Epilepsy, Department of Neurology, University of Florida, United States. Electronic address:

Published: April 2023

Intracranial electroencephalography (iEEG) presents a unique opportunity to extend human neuroscientific understanding. However, typically iEEG is collected from patients diagnosed with focal drug-resistant epilepsy (DRE) and contains transient bursts of pathological activity. This activity disrupts performances on cognitive tasks and can distort findings from human neurophysiology studies. In addition to manual marking by a trained expert, numerous IED detectors have been developed to identify these pathological events. Even so, the versatility and usefulness of these detectors is limited by training on small datasets, incomplete performance metrics, and lack of generalizability to iEEG. Here, we employed a large annotated public iEEG dataset from two institutions to train a random forest classifier (RFC) to distinguish data segments as either 'non-cerebral artifact' (n = 73,902), 'pathological activity' (n = 67,797), or 'physiological activity' (n = 151,290). We found our model performed with an accuracy of 0.941, specificity of 0.950, sensitivity of 0.908, precision of 0.911, and F1 score of 0.910, averaged across all three event types. We extended the generalizability of our model to continuous bipolar data collected in a task-state at a different institution with a lower sampling rate and found our model performed with an accuracy of 0.789, specificity of 0.806, and sensitivity of 0.742, averaged across all three event types. Additionally, we created a custom graphical user interface to implement our classifier and enhance usability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10461234PMC
http://dx.doi.org/10.1016/j.neuroimage.2023.119961DOI Listing

Publication Analysis

Top Keywords

model performed
8
performed accuracy
8
averaged three
8
three event
8
event types
8
identification classification
4
classification pathology
4
pathology artifacts
4
artifacts human
4
human intracranial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!