Despite numerous studies that have been devoted to investigating the aging behaviors of microplastics (MPs), dissolved organic carbon (DOC) and nano-plastics (NPs) released from MPs under different aging conditions were limited. Herein, the characterizations and underlying mechanisms of DOC and NPs leaching from MPs (PVC and PS) in the aquatic environment for 130 days under different aging conditions were investigated. The results showed that aging could reduce the abundance of MPs, and high temperature and UV aging generated small-sized MPs (< 100 μm), especially UV aging. DOC-releasing characteristics were related to MP type and aging condition. Meanwhile, MPs were prone to release protein-like and hydrophilic substances except for 60 °C aging of PS MPs. Additionally, 8.77 × 10-8.87 × 10 and 4.06 × 10-3.94 × 10 NPs/L were detected in leachates from PVC and PS MPs-aged treatments, respectively. High temperature and UV promoted the release of NPs, especially UV irradiation. Meanwhile, smaller sizes and rougher NPs were observed in UV-aged treatments, implying higher ecological risks of leachates from MPs under UV aging. This study highlights the leachate released from MPs under different aging conditions comprehensively, which could offset the knowledge gap between the MPs' aging and their potential threats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.119786DOI Listing

Publication Analysis

Top Keywords

aging conditions
16
aging
12
mps aging
12
mps
9
dissolved organic
8
organic carbon
8
released mps
8
high temperature
8
elucidating characteristic
4
characteristic leachates
4

Similar Publications

Pharmacologic Management of Heart Failure with Preserved Ejection Fraction (HFpEF) in Older Adults.

Drugs Aging

January 2025

Program for the Care and Study of the Aging Heart, Department of Medicine, Weill Cornell Medicine, 420 East 70th St, New York, NY, LH-36510063, USA.

There are several pharmacologic agents that have been touted as guideline-directed medical therapy for heart failure with preserved ejection fraction (HFpEF). However, it is important to recognize that older adults with HFpEF also contend with an increased risk for adverse effects from medications due to age-related changes in pharmacokinetics and pharmacodynamics of medications, as well as the concurrence of geriatric conditions such as polypharmacy and frailty. With this review, we discuss the underlying evidence for the benefits of various treatments in HFpEF and incorporate key considerations for older adults, a subpopulation that may be at higher risk for adverse drug events.

View Article and Find Full Text PDF

Beneficial death: A substantial element of evolution?

Biogerontology

January 2025

Clinic for Heart Surgery (UMH), Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany.

If a shortened lifespan is evolutionarily advantageous, it becomes more likely that nature will strive to change it accordingly, affecting how we understand aging. Premature mortality because of aging would seem detrimental to the individual, but under what circumstances can it be of value? Based on a relative incremental increase in fitness, simulations were performed to reveal the benefit of death. This modification allows for continuous evolution in the model and establishes an optimal lifespan even under challenging conditions.

View Article and Find Full Text PDF

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.

View Article and Find Full Text PDF

Background: The aging of the world's population and the increase in sedentary lifestyles are leading to an increase in walking impairments at older ages. Here, we aimed to comprehensively discuss walking in the context of an aging population; and identify and agree on a list of future research priorities and policy actions.

Methods: We followed a participatory approach and held a multidisciplinary two-day workshop on October, 2023 in Barcelona, Spain, with experts in the fields of aging and walking, and participants from the general public.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!