Methylmercury (MeHg) uptake by demethylating bacteria and inorganic divalent mercury [Hg(II)] uptake by methylating bacteria have been extensively investigated because uptake is the initial step of the intracellular Hg transformation. However, MeHg and Hg(II) uptake by non-methylating/non-demethylating bacteria is overlooked, which may play an important role in the biogeochemical cycling of mercury concerning their ubiquitous presence in the environment. Here we report that Shewanella oneidensis MR-1, a model strain of non-methylating/non-demethylating bacteria, can take up and immobilize MeHg and Hg(II) rapidly without intracellular transformation. In addition, when taken up into MR-1 cells, the intracellular MeHg and Hg(II) were proved to be hardly exported over time. In contrast, adsorbed mercury on cell surface was observed to be easily desorbed or remobilized. Moreover, inactivated MR-1 cells (starved and CCCP-treated) were still capable of taking up nonnegligible amounts of MeHg and Hg(II) over an extended period in the absence and presence of cysteine, suggesting that active metabolism may be not required for both MeHg and Hg(II) uptake. Our results provide an improved understanding of divalent mercury uptake by non-methylating/non-demethylating bacteria and highlight the possible broader involvement of these bacteria in mercury cycling in natural environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.131074 | DOI Listing |
Environ Res
December 2024
College of Resources and Environment, Southwest University, Chongqing, 400715, China.
Sulfate-driven anaerobic oxidation of methane (AOM) and anaerobic digestion (AD) with municipal wastewater sludge containing heavy metals may provide favorable conditions for the biogeochemical transformation of mercury (Hg) by methanogens and methanotrophs. However, it remains largely unclear what Hg-methylators functioned and what role Methanosarcina played in these processes. Here, we performed sulfate-driven AOM following AD with Hg-containing wastewater sludge and investigated the role of microbes, especially Methanosarcina, in the biogeochemical transformation of Hg based on 16S rRNA amplicon and metatranscriptomic sequencing.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, And Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China. Electronic address:
The potential health risks of microplastics (MPs) and their combined exposure with heavy metals such as mercury (Hg) in aquatic environment are increasingly concerned recently. In this work, zebrafish embryos were exposed to different levels of polystyrene microplastics (PS-MPs, ∼0.1 μm) coupled with Hg(II) or/and MeHg at 20 μg/L, to investigate the tissue biodistribution and accumulation of PS-MPs and Hg species, and their interaction, as well as embryo toxicity, oxidative stress and metabolic profiles.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.
Environ Sci Technol
November 2024
Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
The sulfidogenic process mediated by sulfate-reducing bacteria (SRB) is not ideal for treating mercury (Hg)-bearing wastewater due to the risk of methylmercury (MeHg) production. Addressing this challenge, our study demonstrated that, under S-rich conditions and without organic additives, sulfidogenic communities dominated by sulfur-disproportionating bacteria (SDB) can effectively remove Hg(II) and prevent MeHg production. Using various inocula, we successfully established biological sulfidogenic systems driven separately by SDB and SRB.
View Article and Find Full Text PDFEnviron Sci Technol
September 2024
College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, China.
Conventional approaches for in situ remediation of mercury (Hg)-contaminated soils and sediments rely mostly on precipitation or adsorption. However, this can generate Hg-rich surfaces that facilitate microbial production of methylmercury (MeHg), a potent, bioaccumulative neurotoxin. Herein, we prove the concept that the risk of mercury methylation can be effectively minimized by adding sulfur-intercalated layered double hydroxide (S-LDH) to Hg-contaminated soils.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!