Structure evolution and durability of Metal-Nitrogen-Carbon (M = Co, Ru, Rh, Pd, Ir) based oxygen evolution reaction electrocatalyst: A theoretical study.

J Colloid Interface Sci

Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of Fuel Cells & Hybrid Power Sources, Chinese Academy of Sciences, Dalian 116023, China. Electronic address:

Published: June 2023

Developing low-cost, high activity and stability oxygen evolution reaction (OER) catalysts is significantly important but still challenging for water electrolyzers. In this work, we calculated the OER activity and stability of Metal-Nitrogen-Carbon (MNC, M = Co, Ru, Rh, Pd, Ir) based electrocatalyst with different structures (MNC, MNC, MNC) using density functional theory (DFT) method. These electrocatalysts were divided into three groups based on the value of ΔG, that is ΔG > 1.53 eV (PdNC, PdNC, PdNC), ΔG < 1.23 eV (RuNC, RuNC, RuNC, CoNC, CoNC) and 1.23 eV < ΔG < 1.53 eV (RhNC, RhNC, RhNC, IrNC, IrNC, IrNC, CoNC), and ΔG determine whether the structure evolution will appear. The results proved that MNC (M = Rh, Ir) with 1.23 eV < ΔG < 1.53 eV shows higher OER activity due to moderate binding energy between reaction intermediates and MNC. Furthermore, these catalysts could maintain MNC structure without further oxidation and structural evolution under working conditions (high temperature, dynamic condition, local electric field and strong specific adsorption), therefore show excellent stability. However, MNC electrocatalyst with ΔG > 1.53 eV or ΔG < 1.23 eV revealed less stability under working conditions, due to their low intrinsic stability or structural evolution under working conditions, respectively. In conclusion, we proposed a comprehensive evaluation method for MNC electrocatalysts by taking ΔG as the screening criterion for OER activity and stability, as well as ΔE under working condition as descriptor of stability. This is of great significance for the design and screening of ORR, OER and HER electrocatalysts under working conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.02.103DOI Listing

Publication Analysis

Top Keywords

m = co based
8
oxygen evolution
8
evolution reaction
8
activity stability
8
mnc mnc
8
pdnc pdnc
8
structure evolution
4
evolution durability
4
durability metal-nitrogen-carbon
4
metal-nitrogen-carbon m = co
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!