Anisotropic 3D scaffolds for spinal cord guided repair: Current concepts.

Biomater Adv

TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal. Electronic address:

Published: May 2023

AI Article Synopsis

  • * Advances in tissue engineering and regenerative medicine are leading to innovative solutions, such as the development of three-dimensional (3D) biomaterials and scaffolds aimed at repairing and regenerating neural tissues more effectively.
  • * Current research focuses on creating anisotropic scaffolds that mimic the natural structure of spinal cord tissue, with detailed studies on their design and effectiveness in promoting neural cell behavior and improving functional recovery in animal models of SCI.

Article Abstract

A spinal cord injury (SCI) can be caused by unforeseen events such as a fall, a vehicle accident, a gunshot, or a malignant illness, which has a significant impact on the quality of life of the patient. Due to the limited regenerative potential of the central nervous system (CNS), SCI is one of the most daunting medical challenges of modern medicine. Great advances have been made in tissue engineering and regenerative medicine, which include the transition from two-dimensional (2D) to three-dimensional (3D) biomaterials. Combinatory treatments that use 3D scaffolds may significantly enhance the repair and regeneration of functional neural tissue. In an effort to mimic the chemical and physical properties of neural tissue, scientists are researching the development of the ideal scaffold made of synthetic and/or natural polymers. Moreover, in order to restore the architecture and function of neural networks, 3D scaffolds with anisotropic properties that replicate the native longitudinal orientation of spinal cord nerve fibres are being designed. In an effort to determine if scaffold anisotropy is a crucial property for neural tissue regeneration, this review focuses on the most current technological developments relevant to anisotropic scaffolds for SCI. Special consideration is given to the architectural characteristics of scaffolds containing axially oriented fibres, channels, and pores. By analysing neural cell behaviour in vitro and tissue integration and functional recovery in animal models of SCI, the therapeutic efficacy is evaluated for its successes and limitations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2023.213353DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
neural tissue
12
anisotropic scaffolds
8
tissue
5
neural
5
scaffolds spinal
4
cord guided
4
guided repair
4
repair current
4
current concepts
4

Similar Publications

Blocking the p38 MAPK Signaling Pathway in the Rat Hippocampus Alleviates the Depressive-like Behavior Induced by Spinal Cord Injury.

ACS Chem Neurosci

January 2025

Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, the first Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006, China.

Patients with spinal cord injury (SCI) may develop depression, which can affect their rehabilitation. However, the underlying mechanism of depression in SCI patients remains unclear. Previous studies have revealed increased p38 MAPK phosphorylation in the rat hippocampus after SCI, accompanied by depression-like behaviors.

View Article and Find Full Text PDF

Lower red blood cell count is a risk factor for higher D-dimer level in patients with spinal cord injury: A five year retrospective cross-sectional study.

J Spinal Cord Med

January 2025

Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China.

Objectives: This study aims to elucidate the relationship between red blood cell (RBC) count and D-dimer levels in patients with spinal cord injury, with the goal of identifying potential therapeutic targets for minimizing D-dimer levels.

Study Design: An observational, retrospective, cross-sectional, single center study.

Setting: Individuals with SCI (576 cases) admitted to a rehabilitation medicine department.

View Article and Find Full Text PDF

Medial orbitofrontal cortex structure, function, and cognition associates with weight loss for laparoscopic sleeve gastrectomy.

Obesity (Silver Spring)

February 2025

Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Objective: The objective of this study was to investigate underlying mechanisms of long-term effective weight loss after laparoscopic sleeve gastrectomy (LSG) and effects on the medial orbitofrontal cortex (mOFC) and cognition.

Methods: A total of 18 individuals with obesity (BMI ≥ 30 kg/m) underwent LSG. Clinical data, cognitive scores, and brain magnetic resonance imaging scans were evaluated before LSG and 12 months after LSG.

View Article and Find Full Text PDF

Progress in spinal cord organoid research: advancing understanding of neural development, disease modelling, and regenerative medicine.

Biomater Transl

November 2024

Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, Tongji University, Shanghai, China.

Stem cell-derived spinal cord organoids (SCOs) have revolutionised the study of spinal cord development and disease mechanisms, offering a three-dimensional model that recapitulates the complexity of native tissue. This review synthesises recent advancements in SCO technology, highlighting their role in modelling spinal cord morphogenesis and their application in neurodegenerative disease research. We discuss the methodological breakthroughs in inducing regional specification and cellular diversity within SCOs, which have enhanced their predictive ability for drug screening and their relevance in mimicking pathological conditions such as neurodegenerative diseases and neuromuscular disorders.

View Article and Find Full Text PDF

Background: Community integration (CI) is the ultimate goal of rehabilitation for individuals with disabilities. It plays a significant role in restoring their social functioning and facilitating their reintegration into community and family life. However, no studies have utilized bibliometric methods to explore community integration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!