Plants generate energy flows through natural food webs, driven by competition for resources among organisms, which are part of a complex network of multitrophic interactions. Here, we demonstrate that the interaction between tomato plants and a phytophagous insect is driven by a hidden interplay between their respective microbiotas. Tomato plants colonized by the soil fungus , a beneficial microorganism widely used in agriculture as a biocontrol agent, negatively affects the development and survival of the lepidopteran pest by altering the larval gut microbiota and its nutritional support to the host. Indeed, experiments aimed to restore the functional microbial community in the gut allow a complete rescue. Our results shed light on a novel role played by a soil microorganism in the modulation of plant-insect interaction, setting the stage for a more comprehensive analysis of the impact that biocontrol agents may have on ecological sustainability of agricultural systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10013743 | PMC |
http://dx.doi.org/10.1073/pnas.2216922120 | DOI Listing |
PLoS Negl Trop Dis
January 2025
DeWorm3 Project, Seattle, Washington, United States of America.
Background: Historically, soil-transmitted helminth (STH) control and prevention strategies have relied on mass drug administration efforts targeting preschool and school-aged children. While these efforts have succeeded in reducing morbidity associated with STH infection, recent modeling efforts have suggested that expanding intervention to treatment of the entire community could achieve transmission interruption in some settings. Testing the feasibility of such an approach requires large-scale clinical trials, such as the DeWorm3 cluster randomized trial.
View Article and Find Full Text PDFArch Virol
January 2025
Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135, Torino, Italy.
Here, we report the complete genome sequence of a new carlavirus causing mosaic on mint plants in Italy, which we have tentatively named "mint virus C" (MVC). Flexuous particles of around 600 nm were observed using transmission electron microscopy, and next-generation sequencing was performed to determine the nucleotide sequence of the MVC genome, which was found to be 8558 nt long, excluding the poly(A) tail, and shows the typical organization of a carlavirus. The putative proteins encoded by MVC are 44-56% identical to the closest matches in the NCBI database, suggesting that MVC should be considered a member of a new species in the genus Carlavirus.
View Article and Find Full Text PDFArch Microbiol
January 2025
Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan, UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
The agricultural productivity and world-wide food security is affected by different phytopathogens, in which Fusarium is more destructive affecting more than 150 crops, now got resistance against many fungicides that possess harmful effects on environment such as soil health, air pollution, and human health. Fusarium fungicide resistance is an increasing concern in agricultural and environmental contexts, requiring a thorough understanding of its causes, implications, and management approaches. The mechanisms of fungicide resistance in Fusarium spp.
View Article and Find Full Text PDFPeerJ
January 2025
Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China.
Grazing can alter the physicochemical properties of soil and quickly influence the composition of microbial communities. However, the effects of grazing intensity on fungal community composition in different soil depth remain unclear. On the Inner Mongolia Plateau, we studied the effects of grazing intensity treatments including no grazing (NG), light grazing (LG), moderate grazing (MG), heavy grazing (HG), and over grazing (OG) on the physicochemical properties and fungal community composition of surface (0-20 cm) and subsurface (20-40 cm) soil layers.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Beijing Life Science Academy, Beijing, 102200, China.
Background: Fungal communities around plant roots play crucial roles in maintaining plant health. Nonetheless, the responses of fungal communities to bacterial wilt disease remain poorly understood. Here, the structure and function of fungal communities across four consecutive compartments (bulk soil, rhizosphere, rhizoplane and root endosphere) were investigated under the influence of bacterial wilt disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!