AbstractFire-plant feedbacks engineer recurrent fires in pyrophilic ecosystems like savannas. The mechanisms sustaining these feedbacks may be related to plant adaptations that trigger rapid responses to fire's effects on soil. Plants adapted for high fire frequencies should quickly regrow, flower, and produce seeds that mature rapidly and disperse postfire. We hypothesized that the offspring of such plants would germinate and grow rapidly, responding to fire-generated changes in soil nutrients and biota. We conducted an experiment using longleaf pine savanna plants that were paired on the basis of differences in reproduction and survival under annual ("more" pyrophilic) versus less frequent ("less" pyrophilic) fire regimes. Seeds were planted in different soil inoculations from experimental fires of varying severity. The more pyrophilic species displayed high germination rates followed by species-specific rapid growth responses to soil location and fire severity effects on soils. In contrast, the less pyrophilic species had lower germination rates that were not responsive to soil treatments. This suggests that rapid germination and growth constitute adaptations to frequent fires and that plants respond differently to fire severity effects on soil abiotic factors and microbes. Furthermore, variable plant responses to postfire soils may influence plant community diversity and fire-fuel feedbacks in pyrophilic ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1086/722569DOI Listing

Publication Analysis

Top Keywords

plants respond
8
longleaf pine
8
pine savanna
8
pyrophilic ecosystems
8
effects soil
8
pyrophilic species
8
germination rates
8
fire severity
8
severity effects
8
pyrophilic
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!