AbstractThe timing of seasonal host activity, or host phenology, is an important driver of parasite transmission dynamics and evolution. Despite the vast diversity of parasites in seasonal environments, the impact of phenology on parasite diversity remains relatively understudied. For example, little is known about the selective pressures and environmental conditions that favor a monocyclic strategy (complete a single cycle of infection per season) or a polycyclic strategy (complete multiple cycles). Here, we present a mathematical model that demonstrates that seasonal host activity patterns can generate evolutionary bistability in which two evolutionarily stable strategies (ESSs) are possible. The ESS that a particular system reaches is a function of the virulence strategy initially introduced into the system. The results demonstrate that host phenology can, in theory, maintain diverse parasite strategies among isolated geographic locations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003751 | PMC |
http://dx.doi.org/10.1086/722609 | DOI Listing |
Mol Ecol
January 2025
Department of Crop Protection, Hochschule Geisenheim University, Geisenheim, Germany.
Herbivorous insects need to cope with changing host plant biochemistry caused by abiotic and biotic impacts, to meet their dietary requirements. Larvae of the multivoltine European grapevine moth Lobesia botrana, one of the main insect pests in viticulture, feed on both flowers and berries. The nutritional value and defence compounds of these organs are changing with plant phenology and are affected by climate change which may accordingly alter plant-insect interactions.
View Article and Find Full Text PDFInsects
December 2024
Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., 38446 Volos, Greece.
The Mediterranean fruit fly (medfly), (Wiedemann 1824; Diptera, Tephritidae), is considered one of the most important pests, infesting more than 300 species of fresh fruit and vegetables worldwide. The medfly is an important invasive species, which has spread from the eastern part of sub-Saharan Africa to all of the world's continents in recent centuries. Currently, the medfly is expanding its geographical range to cooler, temperate areas of the world, including northern areas of Mediterranean countries and continental areas of Central Europe.
View Article and Find Full Text PDFBackground: Ectothermic arthropods, like ticks, are sensitive indicators of environmental changes, and their seasonality plays a critical role in tick-borne disease dynamics in a warming world. Juvenile tick phenology, which influences pathogen transmission, may vary across climates, with longer tick seasons in cooler climates potentially amplifying transmission. However, assessing juvenile tick phenology is challenging in climates where desiccation pressures reduce the time ticks spend seeking blood meals.
View Article and Find Full Text PDFA new species, Amathusia travancorica sp. nov. (Nymphalidae: Satyrinae: Amathusiini), and a new subspecies, Athyma inara sahyadriensis ssp.
View Article and Find Full Text PDFProc Biol Sci
December 2024
College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
Phenological responses to climate change vary across trophic levels. However, how trophic phenological synchrony determines species' distributions through its effects on population dynamics has rarely been addressed. Here, we show that phenological variation underlies population and geographical range dynamics in a range-shifting herbivore, and demonstrate its interplay with changing trophic interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!