Investigations of simple and accurate meteorology classification systems for influenza epidemics, particularly in subtropical regions, are limited. To assist in preparing for potential upsurges in the demand on healthcare facilities during influenza seasons, our study aims to develop a set of meteorologically-favorable zones for epidemics of influenza A and B, defined as the intervals of meteorological variables with prediction performance optimized. We collected weekly detection rates of laboratory-confirmed influenza cases from four local major hospitals in Hong Kong between 2004 and 2019. Meteorological and air quality records for hospitals were collected from their closest monitoring stations. We employed classification and regression trees to identify zones that optimize the prediction performance of meteorological data in influenza epidemics, defined as a weekly rate > 50 percentile over a year. According to the results, a combination of temperature > 25.1℃ and relative humidity > 79% was favorable to epidemics in hot seasons, whereas either temperature < 16.4℃ or a combination of < 20.4℃ and relative humidity > 76% was favorable to epidemics in cold seasons. The area under the receiver operating characteristic curve (AUC) in model training achieved 0.80 (95% confidence interval [CI], 0.76-0.83) and was kept at 0.71 (95%CI, 0.65-0.77) in validation. The meteorologically-favorable zones for predicting influenza A or A and B epidemics together were similar, but the AUC for predicting influenza B epidemics was comparatively lower. In conclusion, we established meteorologically-favorable zones for influenza A and B epidemics with a satisfactory prediction performance, even though the influenza seasonality in this subtropical setting was weak and type-specific.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00484-023-02439-x | DOI Listing |
Int J Biometeorol
April 2023
Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
Investigations of simple and accurate meteorology classification systems for influenza epidemics, particularly in subtropical regions, are limited. To assist in preparing for potential upsurges in the demand on healthcare facilities during influenza seasons, our study aims to develop a set of meteorologically-favorable zones for epidemics of influenza A and B, defined as the intervals of meteorological variables with prediction performance optimized. We collected weekly detection rates of laboratory-confirmed influenza cases from four local major hospitals in Hong Kong between 2004 and 2019.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!