Integrating plasmonic resonance into photonic bandgap nanostructures promises additional control over their optical properties. Here, one-dimensional (1D) plasmonic photonic crystals with angular-dependent structural colors are fabricated by assembling magnetoplasmonic colloidal nanoparticles under an external magnetic field. Unlike conventional 1D photonic crystals, the assembled 1D periodic structures show angular-dependent colors based on the selective activation of optical diffraction and plasmonic scattering. They can be further fixed in an elastic polymer matrix to produce a photonic film with angular-dependent and mechanically tunable optical properties. The magnetic assembly enables precise control over the orientation of the 1D assemblies within the polymer matrix, producing photonic films with designed patterns displaying versatile colors from the dominant backward optical diffraction and forward plasmonic scattering. The combination of optical diffraction and plasmonic properties within a single system holds the potential for developing programmable optical functionalities for applications in various optical devices, color displays, and information encryption systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c00069 | DOI Listing |
Nano Lett
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Monolayer transition metal dichalcogenides are promising materials that not only are atomically thin but also have direct bandgaps, making them highly regarded in optics and optoelectronics. However, their photoluminescence exhibits almost random polarization at room temperature. The emission is also omnidirectional and weak due to the low quantum yield.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Bottlebrush block polymers, characterized by densely grafted side chains extending from a backbone, have recently garnered significant attention. A particularly attractive feature is the accessibility of ordered morphologies with domain spacings exceeding several hundred nanometers, a capability that is challenging to achieve with linear polymers. These large morphologies make bottlebrush block polymers promising for various applications, such as photonic crystals.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Electrical and Electronic Engineering, Pabna University of Science and Technology, Pabna, 6600, Pabna, Bangladesh.
Methanol (CH₃OH) is a volatile, transparent, and toxic substance widely used in chemical substrates, antifreeze, and industrial applications. Ethanol (C₂H₅OH), in contrast, is commonly used in alcoholic beverages, as a fuel additive, and as an antiseptic. Differentiating between methanol and ethanol is critical due to the severe health risks associated with methanol ingestion, while ethanol is safe for consumption in moderation.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo 05508-000 São Paulo SP Brazil
New tetrakis Eu and Gd β-diketonate complexes containing benzimidazolium (Bzim) as the counterion were synthesized by the one-pot method. The Bzim[Eu(tta)]·HO complex was further incorporated into a poly(methyl methacrylate) matrix (PMMA) at 1, 5, and 10% (w/w), which revealed highly desirable photonic features. The Eu and Gd complexes were characterized by elemental and thermal analyses, in addition to ESI-MS spectrometry, FTIR, and Raman spectroscopy.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!