A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Alloying as a Strategy to Boost the Stability of Copper Nanocatalysts during the Electrochemical CO Reduction Reaction. | LitMetric

Copper nanocatalysts are among the most promising candidates to drive the electrochemical CO reduction reaction (CORR). However, the stability of such catalysts during operation is sub-optimal, and improving this aspect of catalyst behavior remains a challenge. Here, we synthesize well-defined and tunable CuGa nanoparticles (NPs) and demonstrate that alloying Cu with Ga considerably improves the stability of the nanocatalysts. In particular, we discover that CuGa NPs containing 17 at. % Ga preserve most of their CORR activity for at least 20 h while Cu NPs of the same size reconstruct and lose their CORR activity within 2 h. Various characterization techniques, including X-ray photoelectron spectroscopy and operando X-ray absorption spectroscopy, suggest that the addition of Ga suppresses Cu oxidation at open-circuit potential (ocp) and induces significant electronic interactions between Ga and Cu. Thus, we explain the observed stabilization of the Cu by Ga as a result of the higher oxophilicity and lower electronegativity of Ga, which reduce the propensity of Cu to oxidize at ocp and enhance the bond strength in the alloyed nanocatalysts. In addition to addressing one of the major challenges in CORR, this study proposes a strategy to generate NPs that are stable under a reducing reaction environment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c13437DOI Listing

Publication Analysis

Top Keywords

copper nanocatalysts
8
electrochemical reduction
8
reduction reaction
8
corr activity
8
alloying strategy
4
strategy boost
4
boost stability
4
stability copper
4
nanocatalysts
4
nanocatalysts electrochemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!