Coxiella burnetii is an obligate intracellular bacterium and the etiological agent of Q fever in humans. C. burnetii transitions between a replicative, metabolically active large-cell variant (LCV) and a spore-like, quiescent small-cell variant (SCV) as a likely mechanism to ensure survival between host cells and mammalian hosts. C. burnetii encodes three canonical two-component systems, four orphan hybrid histidine kinases, five orphan response regulators, and a histidine phosphotransfer protein, which have been speculated to play roles in the signaling required for C. burnetii morphogenesis and virulence. However, very few of these systems have been characterized. By employing a CRISPR interference system for genetic manipulation of C. burnetii, we created single- and multigene transcriptional knockdown strains targeting most of these signaling genes. Through this, we revealed a role for the C. burnetii PhoBR canonical two-component system in virulence, regulation of [P] maintenance, and P transport. We also outline a novel mechanism by which PhoBR function may be regulated by an atypical PhoU-like protein. We also determined that the GacA.2/GacA.3/GacA.4/GacS orphan response regulators coordinately and disparately regulate expression of SCV-associated genes in C. burnetii LCVs. These foundational results will inform future studies on the role of C. burnetii two-component systems in virulence and morphogenesis. C. burnetii is an obligate intracellular bacterium with a spore-like stability allowing it to survive long periods of time in the environment. This stability is likely due to its biphasic developmental cycle, whereby it can transition from an environmentally stable small-cell variant (SCV) to a metabolically active large-cell variant (LCV). Here, we define the role of two-component phosphorelay systems (TCS) in C. burnetii's ability to survive within the harsh environment contained in the phagolysosome of host cells. We show that the canonical PhoBR TCS has an important role in C. burnetii virulence and phosphate sensing. Further examination of the regulons controlled by orphan regulators indicated a role in modulating gene expression of SCV-associated genes, including genes essential for cell wall remodeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029714 | PMC |
http://dx.doi.org/10.1128/jb.00416-22 | DOI Listing |
Int J Antimicrob Agents
January 2025
School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China; China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China; University of Chinese Academy of Science, Beijing, China; Guangzhou National Laboratory, Guangzhou, China. Electronic address:
Mycobacterium abscessus (Mab) poses serious therapeutic challenges, largely due to its intrinsic resistance to many antibiotics. The development of targeted therapeutic strategies necessitates the identification of bacterial factors that contribute to its reduced susceptibility to antibiotics and/or to the killing by its host cells. In this study, we discovered that Mab strains with disrupted mtrA, mtrB or both, or a gene-edited mtrA encoding MtrA with Tyr102Cys mutation, exhibited highly increased sensitivity to various drugs compared to the wild-type Mab.
View Article and Find Full Text PDFCell Surf
June 2025
Department of Biology, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tulu Awuliya, Ethiopia.
has evolved a sophisticated regulatory system to control its virulence. One of the main roles of this interconnected network is to sense and respond to diverse environmental signals by altering the synthesis of virulence components required for survival in the host, including cell surface adhesins, extracellular enzymes and toxins. The accessory gene regulator (agr), a quorum sensing system that detects the local concentration of a cyclic peptide signaling molecule, is one of the well-studied of these .
View Article and Find Full Text PDFAnn Clin Microbiol Antimicrob
January 2025
Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
Background: The emergence of colistin resistance in carbapenem-resistant Klebsiella pneumoniae (CRKP) is a significant public health concern, as colistin has been the last resort for treating such infections. This study aimed to investigate the prevalence and molecular characteristics of colistin-resistant CRKP isolates in Central South China.
Methods: CRKP isolates from twelve hospitals in Central South China were screened for colistin resistance using broth microdilution.
Sci Rep
January 2025
Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.
Expression of recombinant genes can be controlled using inducible promoters. However, the most commonly used IPTG- and arabinose-inducible promoters result in an 'all-or-nothing' response, leading to fully induced and uninduced bacterial subpopulations. Here, we investigate whether appropriate modifications to these promoter systems can be combined into a single vector system, enabling homogenous expression of two genes of interest that can be precisely tuned using inducer concentration.
View Article and Find Full Text PDFMol Cell
December 2024
Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA. Electronic address:
Prokaryotes possess diverse anti-bacteriophage immune systems, including the single-protein Shedu nuclease. Here, we reveal the structural basis for activation of Bacillus cereus Shedu. Two cryoelectron microscopy structures of Shedu show that it switches between inactive and active states through conformational changes affecting active-site architecture, which are controlled by the protein's N-terminal domain (NTD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!