Donor-acceptor Stenhouse adducts (DASA) have recently emerged as a class of visible-light-induced photochromic molecular switches, but their photocyclization mechanism remains puzzling and incomplete. In this work, we carried out MS-CASPT2//SA-CASSCF calculations to reveal the complete mechanism of the dominant channels and possible side reactions. We found that a new thermal-then-photo isomerization channel, , EEZ → EZZ → EZE, other than the commonly accepted EEZ → EEE → EZE channel, is dominant in the initial step. Besides, our calculations rationalized why the expected byproducts ZEZ and ZEE are unobserved and proposed a competitive stepwise channel for the final ring-closure step. The findings here redraw the mechanistic picture of the DASA reaction by better accounting for experimental observations, and more importantly, provide critical physical insight in understanding the interplay between thermal- and photo-induced processes widely present in photochemical synthesis and reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp05143e | DOI Listing |
J Am Chem Soc
December 2024
Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States.
The development of photoswitches that absorb low energy light is of notable interest due to the growing demand for smart materials and therapeutics necessitating benign stimuli. Donor-acceptor Stenhouse adducts (DASAs) are molecular photoswitches that respond to light in the visible to near-infrared spectrum. As a result of their modular assembly, DASAs can be modified at the donor, acceptor, triene, and backbone heteroatom molecular compartments for the tuning of optical and photoswitching properties.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Univ. Bordeaux, CNRS, Bordeaux INP, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
The effect of conformational dynamics and solvent interactions on the second-order nonlinear optical (NLO) responses of the open and closed forms of a donor-acceptor Stenhouse adduct (DASA) are investigated by a mixed quantum/classical computational approach, which couples molecular dynamics (MD) simulations and time-dependent density functional theory (TD-DFT) calculations. The latter are further combined with various solvation schemes, including polarizable continuum models, hybrid QM/MM approaches using either non polarizable or polarizable electrostatic embedding, and QM/QM' schemes with explicit treatment of a few molecules of the first solvation shell. The performances of the different solvation models are discussed in the context of comparisons with experimental data obtained from hyper-Rayleigh scattering measurements.
View Article and Find Full Text PDFNanoscale
December 2024
Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauki ave., Kyiv, 03028, Ukraine.
We present the spontaneous isomerization of donor-acceptor Stenhouse adducts anchored onto a gold surface, visualized using scanning tunneling spectroscopy. Our investigation reveals a palette of molecular arrangements, including those with ferroelectric-like ordering, evolving over time into a fine pattern consisting of both open and closed forms of the photoswitch.
View Article and Find Full Text PDFMolecules
October 2024
International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai 200444, China.
Mimicking nature, the reversible isomerization of hydrophobic dyes in aqueous solutions is appealing for bio-applications. Here, we report on the reversible isomerization of first-generation solvatochromic donor-acceptor Stenhouse adducts (DASAs) in water within dendritic matrices, realized either through the dendronization of DASAs or the incorporation of DASA pendants into dendronized copolymers. These dendritic macromolecules contain three-fold dendritic oligoethylene glycols (OEGs), which afford the macromolecules water-solubility and unprecedented thermoresponsive behavior.
View Article and Find Full Text PDFSci Adv
November 2024
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.
Organisms with active camouflage ability exhibit changeable appearance with the switching of environments. However, manmade active camouflage systems heavily rely on integrating electronic devices, which encounters problems including a complex structure, poor usability, and high cost . In the current work, we report active camouflage as an intrinsic function of materials by proposing self-adaptive photochromism (SAP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!