Observation of a Plastic Crystal in Water-Ammonia Mixtures under High Pressure and Temperature.

J Phys Chem Lett

Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, MNHN, 4, place Jussieu, Paris 75005, France.

Published: March 2023

AI Article Synopsis

Article Abstract

Solid mixtures of ammonia and water, the so-called ammonia hydrates, are thought to be major components of solar and extra-solar icy planets. We present here a thorough characterization of the recently reported high pressure ()-temperature () phase VII of ammonia monohydrate (AMH) using Raman spectroscopy, X-ray diffraction, and quasi-elastic neutron scattering (QENS) experiments in the ranges 4-10 GPa, 450-600 K. Our results show that AMH-VII exhibits common structural features with the disordered ionico-molecular alloy (DIMA) phase, stable above 7.5 GPa at 300 K: both present a substitutional disorder of water and ammonia over the sites of a body-centered cubic lattice and are partially ionic. The two phases however markedly differ in their hydrogen dynamics, and QENS measurements show that AMH-VII is characterized by free molecular rotations around the lattice positions which are quenched in the DIMA phase. AMH-VII is thus a peculiar crystalline solid in that it combines three types of disorder: substitutional, compositional, and rotational.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.3c00092DOI Listing

Publication Analysis

Top Keywords

high pressure
8
dima phase
8
observation plastic
4
plastic crystal
4
crystal water-ammonia
4
water-ammonia mixtures
4
mixtures high
4
pressure temperature
4
temperature solid
4
solid mixtures
4

Similar Publications

Objectives: The effects of acute physical exercise in patients with resistant hypertension remain largely unexplored compared with hypertensive patients in general. We assessed the short-term effects of acute moderate-intensity (MICE) and high-intensity interval exercise (HIIE) on the clinic (BP) and 24-h ambulatory blood pressure (ABP) of patients with resistant hypertension.

Methods: Using a crossover randomized controlled design, 10 participants (56 ± 7 years) with resistant hypertension performed three experimental sessions: MICE, HIIE, and control.

View Article and Find Full Text PDF

Background: Non-communicable diseases (NCDs) are governed by a cluster of unhealthy behaviours and their determinants, like tobacco and alcohol, unhealthy diet, lack of physical activity, overweight and obesity, pollution (air, water, and soil), and stress. Regulation of these unhealthy behaviours plays a crucial role in blood pressure control among individuals on hypertensive treatment, especially those suffering from uncontrolled hypertension. Hence, the present study aims at identifying the unhealthy behaviours associated with uncontrolled hypertension.

View Article and Find Full Text PDF

The vibron behavior of hydrogen bears significant importance for understanding the phases of solid hydrogen under high pressure. In this work, we reveal an unusual high-pressure behavior of hydrogen confined within nanopores through a combination of experimental measurements and theoretical calculations. The nanoconfined hydrogen molecules retain an hcp lattice up to 170 GPa, yet significant deviations from the vibrational characteristics of bulk hydrogen are observed in the primary vibrons of both Raman and infrared spectra.

View Article and Find Full Text PDF

Our study aims to assess gender differences in blood pressure (BP) control among hypertensive patients in Jordan and identify factors influencing these differences. We conducted a cross-sectional study at Jordan University Hospital (JUH), collecting data from 601 hypertensive patients following up in JUH clinics. Patients were eligible if they were >18 years old, diagnosed with hypertension, taking anti-hypertensive medication for at least 6 months, and had no chronic kidney disease.

View Article and Find Full Text PDF

Balancing pH and Pressure Allows Boosting Voltage and Power Density for a H-I Redox Flow Battery.

ACS Appl Energy Mater

January 2025

Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands.

The decoupled power and energy output of a redox flow battery (RFB) offers a key advantage in long-duration energy storage, crucial for a successful energy transition. Iodide/iodine and hydrogen/water, owing to their fast reaction kinetics, benign nature, and high solubility, provide promising battery chemistry. However, H-I RFBs suffer from low open circuit potentials, iodine crossover, and their multiphase nature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!