Elucidating the mechanisms that control seed development, metabolism, and physiology is a fundamental issue in biology. Michel Caboche had long been a catalyst for seed biology research in France up until his untimely passing away last year. To honour his memory, we have updated a review written under his coordination in 2010 entitled "Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research". This review encompassed different molecular aspects of seed development, reserve accumulation, dormancy and germination, that are studied in the lab created by M. Caboche. We have extended the scope of this review to highlight original experimental approaches implemented in the field over the past decade such as omics approaches aimed at investigating the control of gene expression, protein modifications, primary and specialized metabolites at the tissue or even cellular level, as well as seed biodiversity and the impact of the environment on seed quality.

Download full-text PDF

Source
http://dx.doi.org/10.5802/crbiol.104DOI Listing

Publication Analysis

Top Keywords

seed biology
8
seed development
8
seed
7
progress molecular
4
molecular genetics
4
genetics omics-driven
4
omics-driven seed
4
biology elucidating
4
elucidating mechanisms
4
mechanisms control
4

Similar Publications

Lung cancer remains the leading cause of cancer-related deaths worldwide due to its poor prognosis. Despite significant advancements in the understanding of cancer development, improvements in diagnostic methods, and multimodal therapeutic regimens, the prognosis of lung cancer has still not improved. Therefore, it is reasonable to look for newer and alternative medicines for treatment.

View Article and Find Full Text PDF

Survey of weed species in rice fields using a chloroplast DNA marker and spikelet characteristics identifies accessions with possible paternal inheritance and heteroplasmy.

Physiol Mol Biol Plants

December 2024

Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, Third Cross Street, Taramani Institutional Area, Chennai, 600113 India.

Unlabelled: Hexaploid var. and tetraploid var. are major weeds in rice fields.

View Article and Find Full Text PDF

Identification of the MAP4K gene family reveals GhMAP4K13 regulates drought and salt stress tolerance in cotton.

Physiol Plant

January 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.

Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) are a class of highly conserved serine/threonine-protein kinases in eukaryotes. They participate in the typical MAPK cascade system and various signal transduction pathways regulating biological processes in plants, during stressful conditions. To date, genome-wide identification of MAP4Ks in cotton has not been reported.

View Article and Find Full Text PDF

Prospects for synthetic biology in 21 Century agriculture.

J Genet Genomics

December 2024

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Plant synthetic biology has emerged as a transformative field in agriculture, offering innovative solutions to enhance food security, provide resilience to climate change, and transition to sustainable farming practices. By integrating advanced genetic tools, computational modeling, and systems biology, researchers can precisely modify plant genomes to enhance traits such as yield, stress tolerance, and nutrient use efficiency. The ability to design plants with specific characteristics tailored to diverse environmental conditions and agricultural needs holds great potential to address global food security challenges.

View Article and Find Full Text PDF

The demand for sustainable plant-based protein is rising due to concerns over the environmental impact of animal-based protein. One promising yet overlooked protein source is the seed cake generated from Camellia oleifera oil extraction (COSC), which contains 14-20 % crude protein. COSC protein (COSCP) exhibit excellent nutritional and functional properties making it a promising ingredient for innovative food products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!