A plethora of non-coding RNAs have been found in eukaryotes, notably with the advent of modern sequencing technologies to analyze the transcriptome. Apart from the well-known housekeeping RNA genes (such as the ribosomal RNA or the transfer RNA), many thousands of transcripts detected are not evidently linked to a protein-coding gene. These, so called non-coding RNAs, may code for crucial regulators of gene expression, the small si/miRNAs, for small peptides (translated under specific conditions) or may act as long RNA molecules (antisense, intronic or intergenic long non-coding RNAs or lncRNAs). The lncRNAs interact with members of multiple machineries involved in gene regulation. In this review, we discussed about how plant lncRNAs permitted to discover new regulatory mechanisms acting in epigenetic control, chromatin 3D structure and alternative splicing. These novel regulations diversified the expression patterns and protein variants of target protein-coding genes and are an important element of the response of plants to environmental stresses and their adaptation to changing conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5802/crbiol.106 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!