Permanent Scatterers (PS) point velocities obtained by the interferometric synthetic aperture radar (InSAR) method are generally determined using the linear regression model, which ignores periodic and seasonal effects. In this study, software was developed that can detect periodic effects by applying fast Fourier transformation (FFT) time series analysis to InSAR results. Using the FFT time series analysis, the periodic components of the surface movements at the PS points were determined, and then the annual velocity values free from periodic effects were obtained. The study area was chosen as the Gediz Graben, a tectonically active region where aseismic surface deformations have been observed in recent years. As a result, using the developed method, seasonal effects were successfully determined with the InSAR method at the PS points in the study area with a period of 384 days and an average amplitude of 19 mm. In addition, groundwater level changes of a water well in the region were modeled, and 0.93 correlation coefficient values were calculated between seasonal InSAR displacement values and water level changes. Thus, using the developed methodology, the relationship between the tectonic movement in the Gediz Graben in Turkey and the seasonal movements and the change in the groundwater level was determined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942630PMC
http://dx.doi.org/10.1007/s11069-023-05870-wDOI Listing

Publication Analysis

Top Keywords

fft time
12
time series
12
series analysis
12
gediz graben
12
insar fft
8
insar method
8
seasonal effects
8
effects study
8
periodic effects
8
study area
8

Similar Publications

Detection of respiratory frequency rhythm in human alpha phase shifts: topographic distributions in wake and drowsy states.

Front Physiol

January 2025

Laboratory for Radiation Chemistry and Physics-030, Institute for Nuclear Sciences Vinča-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Introduction: The relationship between brain activity and respiration is recently attracting increasing attention, despite being studied for a long time. Respiratory modulation was evidenced in both single-cell activity and field potentials. Among EEG and intracranial measurements, the effect of respiration was prevailingly studied on amplitude/power in all frequency bands.

View Article and Find Full Text PDF

Background: This study aims to investigate the associations between signal-level physical activity (PA) features derived from wrist accelerometry data and cognitive status in older adults, and to evaluate their potential predictive value when combined with demographics.

Methods: We analyzed PA data from 3,363 older adults (NHATS: n = 747; NHANES: n = 2,616), with each participant contributing a complete 3-day continuous activity sequence. We extracted the most relevant PA features associated with cognitive function using feature engineering and recursive feature elimination.

View Article and Find Full Text PDF

Fast Fourier Transform-based Space-Time Image Velocimetry (FFT-STIV) has gained considerable attention due to its accuracy and efficiency. However, issues such as false detection of MOT and blind areas lead to significant errors in complex environments. This paper analyzes the causes of FFT-STIV gross errors and then proposes a method for validity identification and rectification of FFT-STIV results.

View Article and Find Full Text PDF

An Improved Algorithm to Extract Moiré Fringe Phase for Wafer-Mask Alignment in Nanoimprint Lithography.

Micromachines (Basel)

November 2024

Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China.

This paper proposes an improved algorithm based on the phase extraction of the Moiré fringe for wafer-mask alignment in nanoimprint lithography. The algorithm combines the strengths of the two-dimensional fast Fourier transform (2D-FFT) and two-dimensional window Fourier filtering (2D-WFF) to quickly and accurately extract the fundamental frequencies of interest, eliminate noise in the fundamental frequency band by using the threshold of the local spectrum, and effectively suppress spectral leakage by using a Gaussian window with outstanding sidelobe characteristics while overcoming their limitations, such as avoiding the time-consuming parameter adjustment. The phase extraction accuracy determines the misalignment measurement accuracy, and the alignment accuracy is enhanced to the nanometer level, which is 15.

View Article and Find Full Text PDF

The Tibetan Plateau is home to numerous glaciers that are important for freshwater supply and climate regulation. These glaciers, which are highly sensitive to climatic variations, serve as vital indicators of climate change. Understanding glacier-fed hydrological systems is essential for predicting water availability and formulating climate adaptation strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!