A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

screening of secondary metabolites as anti-diabetes mellitus through PDE9 inhibition. | LitMetric

Background And Purpose: (AP) has long been used as an anti-diabetic agent, but the mechanism of action and active substance responsible for the anti-diabetic effect, particularly by inhibiting phosphodiesterase-9 (PDE9), which is one of the targets of anti-diabetic medications, have not been reported. The aim of the present study was to identify a new anti-diabetes candidate from secondary metabolite compounds of AP through PDE9 inhibition.

Experimental Approach: In order to prepare the chemical structures of the secondary metabolites of AP and PDE9, docking and molecular dynamics simulations were run using Discovery Studio Visualizer, AutoDockTools, AutoDock, and Gromacs, along with a few other supporting software packages.

Findings/results: Molecular docking simulations showed that two of the 46 secondary metabolites of AP had higher free energies of binding, C00003672 (-11.35 kcal/mol) and C00041378 (-9.27 kcal/mol), than native ligand (-9.23 kcal/mol). The results of molecular dynamics showed that compound C00041378 interacted with TRY484 and PHE516, two active side residues of PDE9. ΔGMMGBSA interactions of PDE9 with C00003672, C00041378, and 49E compounds are 51.69, -56.43, and -48.13 kcal/mol, respectively, as well as ΔGMMPBSA interactions of PDE9 with C00003672, C00041378, and 49E compounds, were -12.26, -16.24, and -11.79 kcal/mol kcal/mol, respectively.

Conclusions And Implications: Based on the evaluations of AP secondary metabolites using docking and molecular dynamics simulation, it is suggested that the C00041378 compound has the potential to be an antidiabetic candidate by inhibiting PDE9.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951786PMC
http://dx.doi.org/10.4103/1735-5362.363616DOI Listing

Publication Analysis

Top Keywords

secondary metabolites
16
molecular dynamics
12
pde9
8
docking molecular
8
interactions pde9
8
pde9 c00003672
8
c00003672 c00041378
8
c00041378 49e
8
49e compounds
8
kcal/mol
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!