Since the beginning of the covid-19 crisis, people from all over the world have used social media platforms to publish their opinions, sentiments, and ideas about the coronavirus epidemic and their news. Due to the nature of social networks, users share an immense amount of data every day in a freeway, which gives them the possibility to express opinions and sentiments about the coronavirus pandemic regardless of the time and the place. Moreover, The rapid number of exponential cases globally has become the apprehension of panic, fear, and anxiety among people. In this paper, we propose a new sentiment analysis approach to detect sentiments in Moroccan tweets related to covid-19 from March to October 2020. The proposed model is a recommender approach using the advantages of recommendation systems for classifying each tweet into three classes: positive, negative, or neutral. Experimental results show that our method gives good accuracy(86%) and outperforms the well-known machine learning algorithms. We find also that the sentiments of users changed from period to period, and that the evolution of the epidemiological situation in morocco affects the sentiments of users.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944766PMC
http://dx.doi.org/10.1007/s11042-023-14514-xDOI Listing

Publication Analysis

Top Keywords

sentiment analysis
8
moroccan tweets
8
recommender approach
8
opinions sentiments
8
sentiments users
8
sentiments
6
analysis method
4
method detect
4
detect analyse
4
analyse sentiments
4

Similar Publications

Multimodal sentiment analysis (MSA) aims to use a variety of sensors to obtain and process information to predict the intensity and polarity of human emotions. The main challenges faced by current multi-modal sentiment analysis include: how the model extracts emotional information in a single modality and realizes the complementary transmission of multimodal information; how to output relatively stable predictions even when the sentiment embodied in a single modality is inconsistent with the multi-modal label; how can the model ensure high accuracy when a single modal information is incomplete or the feature extraction performance not good. Traditional methods do not take into account the interaction of unimodal contextual information and multi-modal information.

View Article and Find Full Text PDF

The analysis of social networks enables the understanding of social interactions, polarization of ideas and the spread of information, and therefore plays an important role in society. We use Twitter data-as it is a popular venue for the expression of opinion and dissemination of information-to identify opposing sides of a debate and, importantly, to observe how information spreads between these groups in our current polarized climate. To achieve this, we collected over 688 000 tweets from the Irish Abortion Referendum of 2018 to build a conversation network from users' mentions with sentiment-based homophily.

View Article and Find Full Text PDF

This study investigates the dissemination of archaeological information on Twitter/X through the lens of cultural evolution. By analysing 132,230 tweets containing the hashtag #archaeology from 2021 to 2023, we examine how content and context-related factors influence retweeting behaviour. Our findings reveal that tweets with positive sentiment and non-threatening language are more likely to be shared, contrasting with the common negativity bias observed on social media.

View Article and Find Full Text PDF

Physical Restraint (PR) is a coercive procedure used in emergency psychiatric care to ensure safety in life-threatening situations. Because of its traumatic nature, studies emphasize the importance of considering the patient's subjective experience. We pursued this aim by overcoming classic qualitative approaches and innovatively applying a multilayered semiautomated language analysis to a corpus of narratives about PR collected from 99 individuals across seven mental health services in Italy.

View Article and Find Full Text PDF

In the vibrant linguistic landscape of Bengali, spoken by millions in Bangladesh and India, the gap between saintly and common terms is culturally and computationally significant. Recognising this, we introduce BanglaBlend, a pioneering dataset created to capture these stylistic distinctions. BanglaBlend comes with 7350 annotated sentences, 3675 in saintly form and 3675 in common form, covering a crucial need in natural language processing (NLP) resources for Bangla.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!