Higher mammals are able to simultaneously learn and perform a wide array of complex behaviors, which raises questions about how the neural representations of multiple tasks coexist within the same neural network. Do neurons play invariant roles across different tasks? Alternatively, do the same neurons play different roles in different tasks? To address these questions, we examined neuronal activity in the posterior medial prefrontal cortex of primates while they were performing two versions of arm-reaching tasks that required the selection of multiple behavioral tactics (i.e., the internal protocol of action selection), a critical requirement for the activation of this area. During the performance of these tasks, neurons in the pmPFC exhibited selective activity for the tactics, visuospatial information, action, or their combination. Surprisingly, in 82% of the tactics-selective neurons, the selective activity appeared in a particular task but not in both. Such task-specific neuronal representation appeared in 72% of the action-selective neurons. In addition, 95% of the neurons representing visuospatial information showed such activity exclusively in one task but not in both. Our findings indicate that the same neurons can play different roles across different tasks even though the tasks require common information, supporting the latter hypothesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9947505 | PMC |
http://dx.doi.org/10.3389/fnsys.2023.1049062 | DOI Listing |
Front Mol Biosci
January 2025
Center for Biomolecular and Cellular Structure, Institute for Basic Science, Daejeon, Republic of Korea.
Huntington's disease (HD) is primarily caused by the aberrant aggregation of the N-terminal exon 1 fragment of mutant huntingtin protein (mHttex1) with expanded polyglutamine (polyQ) repeats in neurons. The first 17 amino acids of the N-terminus of Httex1 (N17 domain) immediately preceding the polyQ repeat domain are evolutionarily conserved across vertebrates and play multifaceted roles in the pathogenesis of HD. Due to its amphipathic helical properties, the N17 domain, both alone and when membrane-associated, promotes mHttEx1 aggregation.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
January 2025
Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
Lipids play an essential role in synaptic function, significantly impacting synaptic physiology through their dynamic nature and signaling capabilities. Membrane lipids, including cholesterol, phospholipids, and gangliosides, are crucial for synaptic organization and function. They act as structural integrators and signaling molecules, guiding vesicle intracellular movement and regulating enzyme activity to support neuronal activity.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
January 2025
Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
Tau is a well-known microtubule-associated protein and is located in the cytoplasm of neurons, which play a crucial role in Alzheimer's diseases. Due to its preferred binding to DNA sequences found in the nucleolus and pericentromeric heterochromatin, Tau has been found within the cell nucleus, where it may be a nucleic acid-associated protein. Tau has the ability to directly interact with nuclear pore complex nucleoporins, influencing both their structural and functional integrity.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
Context: Type 2 diabetes (T2D) is a major global concern, with Asia at its epicenter in recent years. Proteins, products of gene transcription, serve as dynamic biomarkers for pinpointing perturbed pathways in disease development. Previous T2D proteomic association studies primarily focused on European populations.
View Article and Find Full Text PDFBrain Res Bull
January 2025
Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China. Electronic address:
Cerebrospinal fluid-contacting neurons (CSF-cNs) exhibit neural stem cell (NSC) properties both in vitro and in vivo, and they may play a critical role in recovery after spinal cord injury (SCI). GABA receptors (GABABRs) are expressed in Pkd2l1 CSF-cNs. However, their role in Pkd2l1 CSF-cNs still needs to be discovered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!