Circular RNA_HIPK3-Targeting miR-93-5p Regulates KLF9 Expression Level to Control Acute Kidney Injury.

Comput Math Methods Med

Department of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.

Published: February 2023

Acute kidney injury (AKI) is a clinical syndrome caused by various reasons that results in the rapid decline of renal function in a short period of time. Severe AKI can lead to multiple organ dysfunction syndrome. Circular RNA HIPK3 (circHIPK3) derived from the gene is involved in multiple inflammatory processes. The present research was performed to explore the function of circHIPK3 on AKI. The AKI model was established by ischemia/reperfusion (I/R) in C57BL/6 mice or hypoxia/reoxygenation (H/R) in HK-2 cells. The function and mechanism of circHIPK3 on AKI were explored via biochemical index measurement; hematoxylin and eosin (HE) staining; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT); flow cytometry; enzyme-linked immunosorbent assay (ELISA); western blot; quantitative real-time polymerase chain reaction (RT-qPCR); detection of reactive oxygen species (ROS) and adenosine triphosphate (ATP); and luciferase reporter assays. circHIPK3 was upregulated in kidney tissues of I/R-induced mice and in H/R-treated HK-2 cells, while the microRNA- (miR-) 93-5p level was decreased in H/R-stimulated HK-2 cells. Furthermore, circHIPK3 silencing or miR-93-5p overexpression could reduce the level of proinflammatory factors and oxidative stress and recover the cell viability in H/R-stimulated HK-2 cells. Meanwhile, the luciferase assay showed that Krüppel-like transcription factor 9 (KLF9) was the downstream target of miR-93-5p. Forced expression of KLF9 blocked the function of miR-93-5p on H/R-treated HK-2 cells. Knockdown of circHIPK3 improved the renal function and reduced the apoptosis level . In conclusion, circHIPK3 knockdown alleviated oxidative stress and apoptosis and inhibited inflammation in AKI via miR-93-5p-mediated downregulation of the KLF9 signal pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949962PMC
http://dx.doi.org/10.1155/2023/1318817DOI Listing

Publication Analysis

Top Keywords

hk-2 cells
20
acute kidney
8
kidney injury
8
renal function
8
circhipk3 aki
8
h/r-treated hk-2
8
h/r-stimulated hk-2
8
oxidative stress
8
circhipk3
7
aki
6

Similar Publications

Background: The treatment options to delay the progression of diabetic nephropathy (DN), a key contributor to chronic kidney disease (CKD), are urgently needed. Previous studies reported that traditional Chinese medicine Panax notoginseng (PNG) exerted beneficial effects on DN. However, the renoprotective effects of Notoginsenoside R2 (NR2), an active component of PNG, on DN have not been investigated.

View Article and Find Full Text PDF

Background: Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease globally. Recent research has identified insulin-like growth factor-binding proteins 2 (IGFBP2) and 4 (IGFBP4) as potential biomarkers for DKD. Overactivation of the complement pathway in DKD remains poorly understood.

View Article and Find Full Text PDF

Sufentanil attenuates renal ischemia-reperfusion injury via the lncRNA KCNQ1OT1/miR-211-5p/HMGB1 axis.

Pathol Res Pract

December 2024

Department of Anesthesiology, Nantong Haimen People's Hospital, Nantong 226100, China. Electronic address:

Inflammation is one of the most significant pathological changes in ischemia-reperfusion injury (IRI). Sufentanil has protective effects on IRI by reducing inflammatory responses. This study aimed to investigate the protective effects and possible mechanisms of sufentanil on renal IRI (RIRI).

View Article and Find Full Text PDF

Naringenin has the potential to regulate ferroptosis and mitigate renal damage in diabetic nephropathy (DN). However, it remains unclear whether the naringenin's effects in DN are linked to its ability to regulate ferroptosis. This study investigated the potential anti-ferroptosis properties of naringenin in high glucose (HG)-induced renal tubular epithelial cell models.

View Article and Find Full Text PDF

Renal fibrosis (RF) is a crucial pathological factor in the progression of chronic kidney disease (CKD) to end-stage renal failure, and accurate and noninvasive assays to monitor the progression of renal fibrosis are needed. Circular RNAs (circRNAs) are noncoding RNAs that can be used as diagnostic biomarkers and therapeutic targets for human diseases. In this study, we analysed the expression of hsa_circ_0008925 in human urinary renal tubular cells and investigated its role in renal fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!