The mechanisms of how dyes and catalysts for solar-driven transformations such as water oxidation to form O work have been intensively investigated, however little is known about how their independent photophysical and chemical processes work together. The level of coordination between the dye and the catalyst in time determines the overall water oxidation system's efficiency. In this computational stochastic kinetics study, we have examined coordination and timing for a Ru-based dye-catalyst diad, [P2Ru(4-mebpy-4'-bimpy)Ru(tpy)(OH)], where P2 is 4,4'-bisphosphonato-2,2'-bipyridine, 4-mebpy-4'-bimpy is 4-(methylbipyridin-4'-yl)--benzimid-'-pyridine, a bridging ligand, and tpy is (2,2':6',2''-terpyridine), taking advantage of the extensive data available for both dye and catalyst, and direct studies of the diads bound to a semiconductor surface. The simulation results for both ensembles of diads and single diads show that progress through the generally accepted water oxidation catalytic cycle is not controlled by the relatively low flux of solar irradiation or by charge or excitation losses, rather is gated by buildup of intermediates whose chemical reactions are not accelerated by photoexcitations. The stochastics of these thermal reactions govern the level of coordination between the dye and the catalyst. This suggests that catalytic efficiency can be improved in these multiphoton catalytic cycles by providing a means for photostimulation of all intermediates so that the catalytic rate is governed by charge injection under solar illumination alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945043PMC
http://dx.doi.org/10.1039/d2sc06966kDOI Listing

Publication Analysis

Top Keywords

water oxidation
16
dye catalyst
12
dye-catalyst diad
8
level coordination
8
coordination dye
8
water
4
oxidation dye-catalyst
4
diad natural
4
natural sunlight
4
sunlight timing
4

Similar Publications

Role of antioxidative stress activity of Fucoxanthin nanoparticle as hepatoprotective in diabetic rats.

Pak J Pharm Sci

January 2025

Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.

This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.

View Article and Find Full Text PDF

Plants constitute a source of natural phytochemical components which are widely known for their potential biological activities. This work concerned a study of the antioxidant, anticancer and anti-inflammatory activities of squirting cucumber (Ecballium elaterium L.) parts (flowers, fruits, leaves and stems) using different solvent extracts (cyclohexane, dichloromethane, ethyl acetate, methanol and water).

View Article and Find Full Text PDF

The fate of the pollutants in aquatic environment is closely related to colloids, and the carrier effect of colloids on pollutants not only affects their bioaccumulation, but may also affect their toxicity. In this study, the effects of natural colloid with different components on the biological toxicity of benzophenone-3 (BP3) to zebrafish larvae (Diano rerio) were studied. BP3 caused oxidative stress damage, thyroid system disorders and neurotoxicity in zebrafish larvae.

View Article and Find Full Text PDF

Dissolved beryllium (< 1 kDa) mobilized as a major element in groundwater in legacy mine waste.

Environ Pollut

January 2025

Applied Geochemistry, Department of Civil, Environmental and Natural Resource Engineering, Luleå University of Technology, Luleå, Sweden.

Research regarding the geochemistry of beryllium (Be) in terrestrial environments is hindered by its high toxicity to humans and the low concentrations normally occurring in the environment. Although Be is considered an immobile element, extremely high dissolved concentrations have been detected in groundwater in the legacy Tailings Storage Facility (TSF) of Smaltjärnen, Sweden. Therefore, a detailed study was conducted to determine physiochemical parameters affecting the speciation of Be in the groundwater.

View Article and Find Full Text PDF

Engineered sulfonated porous carbon/cellulose nanofiber hybrid membrane for high-efficiency osmotic energy conversion applications.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Harnessing ionic gradients to generate electricity has inspired the development of nanofluidic membranes with charged nanochannels for osmotic energy conversion. However, achieving high-performance osmotic energy output remains elusive due to the trade-off between ion selectivity and nanochannel membrane permeability. In this study, we report a homogeneous nanofluidic membrane, composed of sulfonated nanoporous carbon (SPC) and TEMPO-oxidized cellulose nanofibers (T-CNF), engineered to overcome these limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!