During de novo plant organ regeneration, auxin induction mediates the formation of a pluripotent cell mass called callus, which regenerates shoots upon cytokinin induction. However, molecular mechanisms underlying transdifferentiation remain unknown. Here, we showed that the loss of , a histone deacetylase (HDAC) family gene, suppresses shoot regeneration. Treatment with an HDAC inhibitor revealed that the activity of this gene is essential for shoot regeneration. Further, we identified target genes whose expression was regulated through HDA19-mediated histone deacetylation during shoot induction and found that and play important roles in shoot apical meristem formation. Histones at the loci of these genes were hyperacetylated and markedly upregulated in . Transient or overexpression impaired shoot regeneration, as observed in . Therefore, HDA19 mediates direct histone deacetylation of and loci to prevent their overexpression at the early stages of shoot regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944245 | PMC |
http://dx.doi.org/10.1093/pnasnexus/pgad002 | DOI Listing |
BMC Plant Biol
December 2024
Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculturein Krakow, Mickiewicza 21, Krakow, 31-120, Poland.
Background: Brassica oleracea L. is a key plant in the Brassicaceae family, known for popular vegetables like cabbage, broccoli, kale and collard. Collard (B.
View Article and Find Full Text PDFPhysiol Plant
December 2024
Graduate School of Life Sciences, Toyo University, Asaka-shi, Saitama, Japan.
In many plant species, the application of exogenous phytohormones is crucial for initiating de novo shoot regeneration. However, ipecac [Carapichea ipecacuanha (Brot) L. Andersson] has a unique ability to develop adventitious shoots on the epidermis of internodal segments without phytohormone treatment.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
Background: Embryogenic callus (EC) has strong regenerative potential, useful for propagation and genetic transformation. miRNAs have been confirmed to play key regulatory roles in EC regeneration across various plants. However, challenges in EC induction have hindered the breeding of drumstick (Moringa oleifera Lam.
View Article and Find Full Text PDFBMC Genomics
December 2024
Department of Biological Sciences, Seoul National University, Seoul, Korea.
Background: Plants possess a high potential for somatic cell reprogramming, enabling the transition from differentiated tissue to pluripotent callus, followed by the formation of de novo shoots during plant regeneration. Despite extensive studies on the molecular network and key genetic factors involved in this process, the underlying epigenetic landscape remains incompletely understood.
Results: Here, we explored the dynamics of the methylome and transcriptome during the two-step plant regeneration process.
J Appl Genet
December 2024
Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, SGGW, Warsaw, Poland.
Plant regeneration in tissue cultures is crucial for the application of biotechnological methods to plant breeding. However, the genetic basis of in vitro plant regeneration is not fully understood. For cucumber, regeneration protocols from different types of explants have been reported, but thus far, the molecular basis of regeneration from cotyledon explants has only been studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!