Ethylene glycol (EG) derived from plastic waste or CO can serve as a substrate for microbial production of value-added chemicals. Assimilation of EG proceeds though the characteristic intermediate glycolaldehyde (GA). However, natural metabolic pathways for GA assimilation have low carbon efficiency when producing the metabolic precursor acetyl-CoA. In alternative, the reaction sequence catalyzed by EG dehydrogenase, d-arabinose 5-phosphate aldolase, d-arabinose 5-phosphate isomerase, d-ribulose 5-phosphate 3-epimerase (Rpe), d-xylulose 5-phosphate phosphoketolase, and phosphate acetyltransferase may enable the conversion of EG into acetyl-CoA without carbon loss. We investigated the metabolic requirements for function of this pathway in by (over)expressing constituting enzymes in different combinations. Using C-tracer experiments, we first examined the conversion of EG to acetate the synthetic reaction sequence and showed that, in addition to heterologous phosphoketolase, overexpression of all native enzymes except Rpe was required for the pathway to function. Since acetyl-CoA could not be reliably quantified by our LC/MS-method, the distribution of isotopologues in mevalonate, a stable metabolite that is exclusively derived from this intermediate, was used to probe the contribution of the synthetic pathway to biosynthesis of acetyl-CoA. We detected strong incorporation of C carbon derived from labeled GA in all intermediates of the synthetic pathway. In presence of unlabeled co-substrate glycerol, 12.4% of the mevalonate (and therefore acetyl-CoA) was derived from GA. The contribution of the synthetic pathway to acetyl-CoA production was further increased to 16.1% by the additional expression of the native phosphate acyltransferase enzyme. Finally, we demonstrated that conversion of EG to mevalonate was feasible albeit at currently extremely small yields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9947464PMC
http://dx.doi.org/10.3389/fbioe.2023.1125544DOI Listing

Publication Analysis

Top Keywords

synthetic pathway
12
reaction sequence
8
d-arabinose 5-phosphate
8
contribution synthetic
8
acetyl-coa
7
pathway
6
implementation synthetic
4
metabolic
4
synthetic metabolic
4
metabolic pathway
4

Similar Publications

Background: Globally, Breast Cancer (BC) is the most frequent cancer in women and has a major negative impact on the physical and emotional well-being of its patients as well as one of the most common cancers to be diagnosed. Numerous studies have been published to identify various molecular pathways, including PI3K/AKT/PTEN. Moreover, growing evidence suggests that miRNAs have been found to play a vital role in the growth and carcinogenesis of tumors.

View Article and Find Full Text PDF

Pd-catalyzed Asymmetric Hydrogenolysis Rearrangement of Allylic Esters to Access Axially Chiral Olefins.

Angew Chem Int Ed Engl

January 2025

Dalian University of Technology, School of Chemical Engineering, No 2 Linggong Road,Ganjingzi District, 116024, Dalian, CHINA.

The Pd-catalyzed asymmetric hydrogenolysis rearrangement of allylic acetates using (s-Bu)3BHK has been described, achieving the synthesis of axially chiral alkylidene cycloalkanes with excellent enantioselectivities (up to 99% ee) and a wide substrate scope (30 examples of cyclohexanes and cyclobutanes). To the best of our knowledge, this is the first time to achieve synthesis of axially chiral olefins via asymmetric hydrogenolysis of allylic acetates. This methodology not only offers a novel synthetic pathway for non-atropisomeric axially chiral structures but also highlights the potential of asymmetric hydrogenolysis as a powerful tool in synthetic organic chemistry.

View Article and Find Full Text PDF

Diseases affecting bone encompass a spectrum of disorders, from prevalent conditions such as osteoporosis and Paget's disease, collectively impacting millions, to rare genetic disorders including Fibrodysplasia Ossificans Progressiva (FOP). While several classes of drugs, such as bisphosphonates, synthetic hormones, and antibodies, are utilized in the treatment of bone diseases, their efficacy is often curtailed by issues of tolerability and high incidence of adverse effects. Developing therapeutic agents for bone diseases is hampered by the fact that numerous pathways regulating bone metabolism also perform pivotal functions in other organ systems.

View Article and Find Full Text PDF

Dendrimer-Mediated Generation of a Metal-Phenolic Network for Antibody Delivery to Elicit Improved Tumor Chemo/Chemodynamic/Immune Therapy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.

To simplify the composition and improve the efficacy of metal-phenolic network (MPN)-based nanomedicine, herein, we designed an MPN platform to deliver programmed death ligand-1 (PD-L1) antibody (anti-PD-L1) for combined tumor chemo/chemodynamic/immune therapy. Here, generation 5 poly(amidoamine) dendrimers conjugated with gossypol (Gos) through boronic ester bonds were used as a synthetic polyphenol to coordinate Mn, and then complexed with anti-PD-L1 to obtain the nanocomplexes (for short, DPGMA). The prepared DPGMA exhibited good water dispersibility with a hydrodynamic size of 166.

View Article and Find Full Text PDF

De novo biosynthesis of mogroside V by multiplexed engineered yeasts.

Metab Eng

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China. Electronic address:

High sugar intake has become a global health concern due to its association with various diseases. Mogroside V (MG-V), a zero-calorie sweetener with multiple medical properties, is emerging as a promising sugar substitute. However, its application is hindered by low natural abundance and the inefficiency of conventional plant extraction methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!