The enteric nervous system (ENS), sometimes referred to as a "second brain" is a quasi-autonomous nervous system, made up of interconnected plexuses organized in a mesh-like network lining the gastrointestinal tract. Originally described as an actor in the regulation of digestion, bowel contraction, and intestinal secretion, the implications of the ENS in various central neuropathologies has recently been demonstrated. However, with a few exceptions, the morphology and pathologic alterations of the ENS have mostly been studied on thin sections of the intestinal wall or, alternatively, in dissected explants. Precious information on the three-dimensional (3-D) architecture and connectivity is hence lost. Here, we propose the fast, label-free 3-D imaging of the ENS, based on intrinsic signals. We used a custom, fast tissue-clearing protocol based on a high refractive-index aqueous solution to increase the imaging depth and allow us the detection of faint signals and we characterized the autofluorescence (AF) from the various cellular and sub-cellular components of the ENS. Validation by immunofluorescence and spectral recordings complete this groundwork. Then, we demonstrate the rapid acquisition of detailed 3-D image stacks from unlabeled mouse ileum and colon, across the whole intestinal wall and including both the myenteric and submucosal enteric nervous plexuses using a new spinning-disk two-photon (2P) microscope. The combination of fast clearing (less than 15 min for 73% transparency), AF detection and rapid volume imaging [less than 1 min for the acquisition of a z-stack of 100 planes (150*150 μm) at sub-300-nm spatial resolution] opens up the possibility for new applications in fundamental and clinical research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948619 | PMC |
http://dx.doi.org/10.3389/fnana.2022.1070062 | DOI Listing |
Brain
December 2024
School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
Convergent data, across species, paint a compelling picture of the critical role of the gut and its resident microbiota in several brain functions and disorders. The chemicals mediating communication along these sophisticated highways of the brain-gut-microbiome (BGM) axis include both microbiota metabolites and classical neurotransmitters. Amongst the latter, GABA is fundamental to brain function where it mediates the majority of neuronal inhibition.
View Article and Find Full Text PDFMucosal Immunol
December 2024
Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK. Electronic address:
Neuro-immune interactions within barrier organs, such as lung, gut, and skin, are crucial in regulating tissue homeostasis, inflammatory responses, and host defence. Our rapidly advancing understanding of peripheral neuroimmunology is transforming the field of barrier tissue immunology, offering a fresh perspective for developing therapies for complex chronic inflammatory disorders affecting barrier organs. However, most studies have primarily examined interactions between the peripheral nervous system and the immune system from a neuron-focused perspective, while glial cells, the nonneuronal cells of the nervous system, have received less attention.
View Article and Find Full Text PDFBMC Womens Health
December 2024
Department of Basic Sciences - Physiology Division, Ponce Health Sciences University, Ponce Research Institute, PO Box 7004, Ponce, 00732-7004, PR, Puerto Rico.
Background: Endometriosis is a complex gynecological disorder characterized by the ectopic growth of endometrial tissue. Symptoms of endometriosis are known to impair the quality of life of patients, and among these are found dysmenorrhea, chronic pelvic pain, and gastrointestinal (GI) issues. GI issues such as painful bowel movements, bloating and constipation or diarrhea, are one of the common reasons for misdiagnosis with irritable bowel syndrome (IBS).
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
How the gut microbiota and immune system maintain intestinal homeostasis in concert with the enteric nervous system (ENS) remains incompletely understood. To address this gap, we assessed small intestinal transit, enteric neuronal density, enteric neurogenesis, intestinal microbiota, immune cell populations and cytokines in wildtype and T-cell deficient germ-free mice colonized with specific pathogen-free (SPF) microbiota, conventionally raised SPF and segmented filamentous bacteria (SFB)-monocolonized mice. SPF microbiota increased small intestinal transit in a T cell-dependent manner.
View Article and Find Full Text PDFAdv Biol (Weinh)
December 2024
Department of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA.
Neurosensory circuits of the gastrointestinal tract sense microbial and nutrient changes in the gut; however, studying these circuits in vivo is hindered by invasive techniques and ethical concerns. Here, an in vitro model of enteroendocrine cells (EECs) and calcium reporting enteric neurons (ENs) is established and validated for functional signaling. Both mechanical and sucrose stimulation of co-cultures increased the percentage of neurons undergoing a calcium flux, indicating an action potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!