Technological advancements in phylodynamic modeling coupled with the accessibility of real-time pathogen genetic data are increasingly important for understanding the infectious disease transmission dynamics. In this study, we compare the transmission potentials of North American influenza A(H1N1)pdm09 derived from sequence data to that derived from surveillance data. The impact of the choice of tree-priors, informative epidemiological priors, and evolutionary parameters on the transmission potential estimation is evaluated. North American Influenza A(H1N1)pdm09 hemagglutinin (HA) gene sequences are analyzed using the coalescent and birth-death tree prior models to estimate the basic reproduction number ( ). Epidemiological priors gathered from published literature are used to simulate the birth-death skyline models. Path-sampling marginal likelihood estimation is conducted to assess model fit. A bibliographic search to gather surveillance-based values were consistently lower (mean ≤ 1.2) when estimated by coalescent models than by the birth-death models with informative priors on the duration of infectiousness (mean ≥ 1.3 to ≤2.88 days). The user-defined informative priors for use in the birth-death model shift the directionality of epidemiological and evolutionary parameters compared to non-informative estimates. While there was no certain impact of clock rate and tree height on the estimation, an opposite relationship was observed between coalescent and birth-death tree priors. There was no significant difference (p = 0.46) between the birth-death model and surveillance estimates. This study concludes that tree-prior methodological differences may have a substantial impact on the transmission potential estimation as well as the evolutionary parameters. The study also reports a consensus between the sequence-based estimation and surveillance-based estimates. Altogether, these outcomes shed light on the potential role of phylodynamic modeling to augment existing surveillance and epidemiological activities to better assess and respond to emerging infectious diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944206PMC
http://dx.doi.org/10.1016/j.idm.2023.02.003DOI Listing

Publication Analysis

Top Keywords

transmission potential
12
north american
12
american influenza
12
evolutionary parameters
12
surveillance data
8
phylodynamic modeling
8
influenza ah1n1pdm09
8
epidemiological priors
8
potential estimation
8
coalescent birth-death
8

Similar Publications

Fano Resonance in Epsilon-Near-Zero Media.

Phys Rev Lett

December 2024

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.

Fano resonance is achieved by tuning two coupled oscillators and has exceptional potential for modulating light dispersion. Here, distinct from the classical Fano resonances achieved through photonics methodologies, we introduce the Fano resonance in epsilon-near-zero (ENZ) media with novel electromagnetic properties. By adjusting the background permeability of the ENZ host, the transmission spectrum exhibits various dispersive line shapes and covers the full range of Fano parameter q morphologies, from negative to positive infinity.

View Article and Find Full Text PDF

The omicron variant of SARS-CoV-2 drove broadly increased seroprevalence in a public university setting.

PLOS Glob Public Health

January 2025

Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America.

Omicron is the comparatively most transmissible and contagious variant of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). We conducted a seroprevalence study from March 1-3, 2022, to investigate the seroprevalence of SARS-CoV-2 antibodies among individuals aged 18 years and older after the Omicron outbreak. The seroprevalence of anti-receptor binding domain (RBD) antibodies was found to be 96.

View Article and Find Full Text PDF

Small rodents can cause problems on farms such as infrastructure damage, crop losses or pathogen transfer. The latter threatens humans and livestock alike. Frequent contacts between wild rodents and livestock favour pathogen transfer and it is therefore important to understand the movement patterns of small mammals in order to develop strategies to prevent damage and health issues.

View Article and Find Full Text PDF

Objective: To examine the longitudinal associations of optical spectral transmission (OST) with clinical inflammatory arthritis activity markers in order to investigate its potential in monitoring disease activity.

Methods: OST measurements were performed in 1,312 wrist and finger joints of 60 patients with clinical suspicion of inflammatory activity, within the context of known rheumatic inflammatory diseases at two separate time intervals. In each time point, patients underwent additional clinical and laboratory examinations.

View Article and Find Full Text PDF

This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!