We herein report a waste minimization protocol for the β-azidation of α,β-unsaturated carbonyl compounds using TMSN. The selection of the appropriate catalyst (), in combination with the reaction medium, resulted in enhanced catalytic efficiency and a low environmental footprint. The thermal and mechanical stability of the polymeric support allowed us to recover the catalyst for up to 10 consecutive runs. The CHCN:HO azeotrope has a 2-fold positive effect on the process, increasing the efficiency of the protocol and minimizing waste generation. Indeed, the azeotropic mixture, used as a reaction medium and for the workup procedure, was recovered by distillation, leading to an easy and environmentally friendly procedure for product isolation in high yield and with a low E-factor. A comprehensive evaluation of the environmental profile was performed by the calculation of different green metrics (AE, RME, MRP, 1/SF) and a comparison with other literature available protocols. A flow protocol was defined to scale-up the process, and up to 65 mmol of substrates were efficiently converted with a productivity of 0.3 mmol/min.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945162 | PMC |
http://dx.doi.org/10.1021/acssuschemeng.2c07213 | DOI Listing |
Int J Biol Macromol
December 2024
Federal University of Lavras, Department of Food Science, Lavras, Minas Gerais 37200-900, Brazil. Electronic address:
The application of cellulose nanofibers (CNF) as cryoprotectants in frozen foods has rarely been explored. In this study, the cryoprotective effect of CNF (2, 4 and 6 % w/w) on mechanically separated chicken meat (MSCM) surimi-like material was investigated, during frozen storage (5 and 60 days) under temperature fluctuation. Surimi-like without cryopreservation agents was more susceptible to protein oxidation due to ice recrystallization.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.
Catalytic enantioselective substitution of the readily available racemic α-halo carbonyl compounds by nitrogen nucleophiles represents one of the most convenient and direct approaches to access enantioenriched α-amino carbonyl compounds. Distinct from the two available strategies involving radicals and enolate ions, herein we have developed a new protocol featuring an electronically opposite way to weaken/cleave the carbon-halogen bond. A suitable chiral anion-based catalyst enables effective asymmetric control over the key positively charged intermediates.
View Article and Find Full Text PDFChemosphere
December 2024
Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, RJ, 21941-909, Brazil. Electronic address:
Peri-urban conserved natural or semi-natural areas provide several ecosystem services and assist in reducing air pollution in cities. The aim of this study is to assess the contribution to the improvement of air quality of a small area (<1 km) adjacent to a city in the Metropolitan Region of Rio de Janeiro (Brazil), which is seriously affected by vehicular and industrial emissions of pollutants. Hydrocarbon (HC) and carbonyl compounds (CC) levels were determined, by employing TO-15 and TO-11A US EPA Methods, respectively, in both the urban and green areas.
View Article and Find Full Text PDFLangmuir
December 2024
School of Materials, Sun Yat-sen University, Shenzhen 518107, China.
Hydrogen sulfide (HS), carbonyl sulfide (COS), and dimethyl sulfide (DMS) are the primary sulfur compounds found in seawater, which cause pitting corrosion on the oxide passivation film of titanium, known as "the marine metals". In this study, density functional theory (DFT) was used to analyze the adsorption and surface electronic properties of these three small molecules on the anatase TiO(101) surface. The analysis was conducted through adsorption energy, work function, Mulliken charge population, and density of states (DOS).
View Article and Find Full Text PDFEnviron Sci Process Impacts
December 2024
Department of Chemistry, University of Toronto, Canada.
Proton transfer reaction mass spectrometry (PTR-MS) is often employed to characterize gas-phase compounds in both indoor and outdoor environments. PTR-MS measurements are usually made without upstream chromatographic separation, so it can be challenging to differentiate between an ion of interest, its isomers, and fragmentation products from other species all detected at the same mass-to-charge ratio. These isomeric contributions and fragmentation interferences can confound the determination of accurate compound mixing ratios, the assignment of accurate chemical properties, and corresponding analyses of chemical fate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!