Effects of warming on the structure of aquatic communities in tropical bromeliad microecosystems.

Ecol Evol

Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais Universidade Estadual de Maringá (UEM) Maringá Paraná Brazil.

Published: February 2023

Freshwaters are among the most vulnerable ecosystems to climate warming, with projected temperature increases over the coming decades leading to significant losses of aquatic biodiversity. Experimental studies that directly warm entire natural ecosystems in the tropics are needed, for understanding the disturbances on aquatic communities. Therefore, we conducted an experiment to test the impacts of predicted future warming on density, alpha diversity, and beta diversity of freshwater aquatic communities, inhabiting natural microecosystems-Neotropical tank bromeliads. Aquatic communities within the tanks bromeliads were experimentally exposed to warming, with temperatures ranging from 23.58 to 31.72°C. Linear regression analysis was used to test the impacts of warming. Next, distance-based redundancy analysis was performed to assess how warming might alter total beta diversity and its components. This experiment was conducted across a gradient of habitat size (bromeliad water volume) and availability of detrital basal resources. A combination of the highest detritus biomass and higher experimental temperatures resulted in the greatest density of flagellates. However, the density of flagellates declined in bromeliads with higher water volume and lower detritus biomass. Moreover, the combination of the highest water volume and high temperature reduced density of copepods. Finally, warming changed microfauna species composition, mostly through species substitution ( component of total beta-diversity). These findings indicate that warming strongly structures freshwater communities by reducing or increasing densities of different aquatic communities groups. It also enhances beta-diversity, and many of these effects are modulated by habitat size or detrital resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944163PMC
http://dx.doi.org/10.1002/ece3.9824DOI Listing

Publication Analysis

Top Keywords

aquatic communities
20
water volume
12
test impacts
8
beta diversity
8
habitat size
8
combination highest
8
detritus biomass
8
density flagellates
8
warming
7
aquatic
6

Similar Publications

Climate change could amplify weak synchrony in large marine ecosystems.

Proc Natl Acad Sci U S A

January 2025

Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045.

Climate change is increasing the frequency of large-scale, extreme environmental events and flattening environmental gradients. Whether such changes will cause spatially synchronous, large-scale population declines depends on mechanisms that limit metapopulation synchrony, thereby promoting rescue effects and stability. Using long-term data and empirical dynamic models, we quantified spatial heterogeneity in density dependence, spatial heterogeneity in environmental responses, and environmental gradients to assess their role in inhibiting synchrony across 36 marine fish and invertebrate species.

View Article and Find Full Text PDF

Sponges are key ecosystem engineers that shape, structure and enhance the biodiversity of marine benthic communities globally. Sponge aggregations and reefs are recognized as vulnerable marine ecosystems (or VMEs) due to their susceptibility to damage from bottom-contact fishing gears. Ensuring their long-term sustainability, preservation, and ecosystem functions requires the implementation of sound scientific conservation tools.

View Article and Find Full Text PDF

Copper and zinc isotope fractionation during phototrophic biofilm growth.

Sci Total Environ

January 2025

Geosciences and Environment Toulouse, Université de Toulouse, CNRS, Université Toulouse 3 Paul Sabatier (UPS), 14 Avenue Edouard Belin, 31400 Toulouse, France; BIO-GEO-CLIM Laboratory, Tomsk State University, 36 Lenin Ave, 634050, Tomsk, Russia. Electronic address:

Copper (Cu) and zinc (Zn) are two trace metals that exhibit both limiting and toxic effects on aquatic microorganisms. However, in contrast to good knowledge of these metal interactions with individual microbial cultures, the biofilm, complex natural consortium of microorganisms, remains poorly understood with respect to its control on Cu and Zn in the aquatic environments. Towards constraining the magnitude and mechanisms of Cu and Zn isotope fractionation in the presence of phototrophic biofilms composed of different proportion of diatoms, green algae and cyanobacteria, we studied long-term growth in a rotating annular bioreactor and quantified the uptake of metals and their isotope fractionation at environmentally-relevant Cu and Zn concentrations.

View Article and Find Full Text PDF

The extent of alien taxa impacts on river ecosystem health is unclear, but their frequency continues to rise. We investigated 1) the prevalence of including alien taxa in common bioindicators used in river bioassessment, 2) the effect of alien taxa on the richness and abundance of natives, and 3) whether including alien taxa in bioassessment tools increased their sensitivity to river degradation. In the 17 countries analyzed fish represented the greatest number of alien species (1726), followed by macrophytes (925), macroinvertebrates (556), and diatoms (7).

View Article and Find Full Text PDF

The Amphibian Major Histocompatibility Complex-A Review and Future Outlook.

J Mol Evol

January 2025

Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.

The major histocompatibility complex (MHC) is a cluster of functionally related genes encoding proteins which, among other functions, mediate immune system activation. While the MHC of many vertebrates has been extensively studied, less is known about the amphibian MHC. This represents an important knowledge gap because amphibians mark the evolutionary transition from an aquatic to a terrestrial lifestyle and often maintain a biphasic lifestyle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!