is one of the most notorious genus amongst the family. Monkeypox (MP) is a zoonotic disease that has been spreading throughout Africa. The spread is global, and incidence rates are increasing daily. The spread of the virus is rapid due to human-to-human and animals-to-human transmission. World Health Organization (WHO) has declared monkeypox virus (MPV) as a global health emergency. Since treatment options are limited, it is essential to know the modes of transmission and symptoms to stop disease spread. The information from host-virus interactions revealed significantly expressed genes that are important for the progression of the MP infection. In this review, we highlighted the MP virus structure, transmission modes, and available therapeutic options. Furthermore, this review provides insights for the scientific community to extend their research work in this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9950268 | PMC |
http://dx.doi.org/10.3389/fcimb.2023.1076251 | DOI Listing |
Emerg Microbes Infect
January 2025
State Key Laboratory of Experimental Hematology, Department of Physiology and Pathophysiology, Tianjin Medical University, Heping, Tianjin, 300070 China.
The monkeypox (MPXV) outbreak in 2022 is more prevalent among individuals with human immunodeficiency virus (HIV). While it is plausible that HIV-induced immunosuppression could result in a more severe progression, the exact mechanisms remain undetermined. To better understand the immunopathology of MPXV in patients with and without HIV infection, we employed single-cell RNA sequencing (scRNA-seq) to analyze peripheral blood mononuclear cells (PBMCs) from 6 patients hospitalized for MPXV, 3 of whom had HIV infection (HIV antibody positive & HIV RNA level below the detection limit), and 3 patients only infected with MPXV (HIV-).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science and Engineering, E.G.S. Pillay Engineering College, Nagapattinam, 611002, Tamil Nadu, India.
In response to the pressing need for the detection of Monkeypox caused by the Monkeypox virus (MPXV), this study introduces the Enhanced Spatial-Awareness Capsule Network (ESACN), a Capsule Network architecture designed for the precise multi-class classification of dermatological images. Addressing the shortcomings of traditional Machine Learning and Deep Learning models, our ESACN model utilizes the dynamic routing and spatial hierarchy capabilities of CapsNets to differentiate complex patterns such as those seen in monkeypox, chickenpox, measles, and normal skin presentations. CapsNets' inherent ability to recognize and process crucial spatial relationships within images outperforms conventional CNNs, particularly in tasks that require the distinction of visually similar classes.
View Article and Find Full Text PDFLancet Infect Dis
January 2025
Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique UMR3569, Paris 75015, France; Vaccine Research Institute, Paris, France. Electronic address:
Virol J
January 2025
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China.
Monkeypox virus (MPXV) is an important zoonotic pathogenic virus, which poses serious threats to public health. MPXV infection can be prevented by immunization against the variola virus. Because of the safety risks and side effects of vaccination with live vaccinia virus (VACV) strain Tian Tan (VTT), we constructed two gene-deleted VTT recombinants (TTVAC7 and TTVC5).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Clinical Research Institute, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005 China; Scientific Research Foundation of State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen 361005 China. Electronic address:
As a zoonotic virus, highly sensitive detection of monkeypox virus is crucial for its prevention and control due to its rapid increase in cases worldwide and the extremely high risk of virus transmission. In this paper, based on the principle of antigen-antibody specific recognition, an ultrasensitive resonance Raman biosensing probe was prepared using a molecule with the bifunctionality of resonance Raman effect and capturing antibody; and with the strong affinity of the biotin-streptavidin (Bio-SA) system, Bio-antibody and SA test strips were prepared. To match the T-line of the test strip, a portable Raman instrument with a strip-shaped spot was designed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!