A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Outcome prediction in hospitalized COVID-19 patients: Comparison of the performance of five severity scores. | LitMetric

AI Article Synopsis

  • The study aimed to validate five COVID-19 prognostic tools for predicting outcomes in hospitalized patients, focusing on 30-day mortality and the need for mechanical ventilation.
  • A total of 285 patients were analyzed, revealing an 8.8% 30-day mortality rate, with the Shang COVID severity score being the most effective in predicting mortality.
  • The SEIMC and Shang severity scores also showed strong predictive capabilities for mortality, while the COVID-IRS-NLR and VICE scores were better suited for forecasting the need for invasive mechanical ventilation.

Article Abstract

Background: The aim of our study was to externally validate the predictive capability of five developed coronavirus disease 2019 (COVID-19)-specific prognostic tools, including the COVID-19 Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Shang COVID severity score, COVID-intubation risk score-neutrophil/lymphocyte ratio (IRS-NLR), inflammation-based score, and ventilation in COVID estimator (VICE) score.

Methods: The medical records of all patients hospitalized for a laboratory-confirmed COVID-19 diagnosis between May 2021 and June 2021 were retrospectively analyzed. Data were extracted within the first 24 h of admission, and five different scores were calculated. The primary and secondary outcomes were 30-day mortality and mechanical ventilation, respectively.

Results: A total of 285 patients were enrolled in our cohort. Sixty-five patients (22.8%) were intubated with ventilator support, and the 30-day mortality rate was 8.8%. The Shang COVID severity score had the highest numerical area under the receiver operator characteristic (AUC-ROC) (AUC 0.836) curve to predict 30-day mortality, followed by the SEIMC score (AUC 0.807) and VICE score (AUC 0.804). For intubation, both the VICE and COVID-IRS-NLR scores had the highest AUC (AUC 0.82) compared to the inflammation-based score (AUC 0.69). The 30-day mortality increased steadily according to higher Shang COVID severity scores and SEIMC scores. The intubation rate exceeded 50% in the patients stratified by higher VICE scores and COVID-IRS-NLR score quintiles.

Conclusion: The discriminative performances of the SEIMC score and Shang COVID severity score are good for predicting the 30-day mortality of hospitalized COVID-19 patients. The COVID-IRS-NLR and VICE showed good performance for predicting invasive mechanical ventilation (IMV).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945531PMC
http://dx.doi.org/10.3389/fmed.2023.1121465DOI Listing

Publication Analysis

Top Keywords

30-day mortality
20
shang covid
16
covid severity
16
severity score
12
score auc
12
score
9
hospitalized covid-19
8
covid-19 patients
8
severity scores
8
inflammation-based score
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!