Human epidemiological studies reveal that dietary and environmental alterations influence the health of the offspring and that the effect is not limited to the F1 or F2 generations. Non-Mendelian transgenerational inheritance of traits in response to environmental stimuli has been confirmed in non-mammalian organisms including plants and worms and are shown to be epigenetically mediated. However, transgenerational inheritance beyond the F2 generation remains controversial in mammals. Our lab previously discovered that the treatment of rodents (rats and mice) with folic acid significantly enhances the regeneration of injured axons following spinal cord injury and , and the effect is mediated by DNA methylation. The potential heritability of DNA methylation prompted us to investigate the following question: Is the enhanced axonal regeneration phenotype inherited transgenerationally without exposure to folic acid supplementation in the intervening generations? In the present review, we condense our findings showing that a beneficial trait (i.e., enhanced axonal regeneration after spinal cord injury) and accompanying molecular alterations (i.e., DNA methylation), triggered by an environmental exposure (i.e., folic acid supplementation) to F0 animals only, are inherited transgenerationally and beyond the F3 generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949995PMC
http://dx.doi.org/10.1093/eep/dvad002DOI Listing

Publication Analysis

Top Keywords

axonal regeneration
12
spinal cord
12
cord injury
12
folic acid
12
dna methylation
12
regeneration spinal
8
transgenerational inheritance
8
enhanced axonal
8
inherited transgenerationally
8
exposure folic
8

Similar Publications

Exploring the Unique Properties and Superior Schwann Cell Guiding Abilities of Spider Egg Sac Silk.

ACS Appl Bio Mater

January 2025

Institute of Physics and Materials Science, Department of Natural Sciences and Sustainable Ressources, BOKU University, Peter Jordan-Straß 82, 1190 Vienna, Austria.

Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk.

View Article and Find Full Text PDF

Functional recovery following spinal cord injury will require the regeneration and repair of damaged neuronal pathways. It is well known that the tissue response to injury involves inflammation and the formation of a glial scar at the lesion site, which significantly impairs the capacity for neuronal regeneration and functional recovery. There are initial attempts by both supraspinal and intraspinal neurons to regenerate damaged axons, often influenced by the neighboring tissue pathology.

View Article and Find Full Text PDF

Introduction: Multiple Sclerosis (MS) is a complex auto-inflammatory disease affecting the brain and spinal cord, which results in axonal de-myelination and symptoms including fatigue, pain, and difficulties with vision and mobility. The involvement of the immune system in the pathology of MS is well established, particularly the adaptive T cell response, and there has been a particular focus on the IL-17-producing subset of Th17 cells and their role in driving disease. However, the importance of innate immune cells has not been so well characterised.

View Article and Find Full Text PDF

Peripheral nerve injury repair has always been a research concern of scientists. At the tissue level, axonal regeneration has become a research spotlight in peripheral nerve repair. Through transplantation of autologous nerve grafts or other emerging biomaterials functional recovery after facial nerve injury is not ideal in clinical scenarios.

View Article and Find Full Text PDF

Current Concepts of the Management of Painful Traumatic Peripheral Nerve Neuromas.

J Am Acad Orthop Surg

November 2024

From the Department of Hand and Reconstructive Microsurgery, National University Health System, Singapore (Lee), the Department of Orthopedic Surgery (Sammarco), the Department of Neurosurgery (Spinner), Mayo Clinic, Rochester, MN, and the Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN (Shin).

Painful neuromas are a complex clinical condition that results in notable disability and functional impairment after injury to a peripheral nerve. When regenerating axons lack a distal target, they form a stump neuroma. Up to 60% of neuromas are painful because of mechanical sensitivity and crosstalk between nerve fibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!