AI Article Synopsis

Article Abstract

Polyploids recurrently emerge in angiosperms, but most polyploids are likely to go extinct before establishment due to minority cytotype exclusion, which may be specifically a constraint for dioecious plants. Here we test the hypothesis that a stable sex-determination system and spatial/ecological isolation facilitate the establishment of dioecious polyploids. We determined the ploidy levels of 351 individuals from 28 populations of the dioecious species Salix polyclona, and resequenced 190 individuals of S. polyclona and related taxa for genomic diversity analyses. The ploidy survey revealed a frequency 52% of tetraploids in S. polyclona, and genomic k-mer spectra analyses suggested an autopolyploid origin for them. Comparisons of diploid male and female genomes identified a female heterogametic sex-determining factor on chromosome 15, which probably also acts in the dioecious tetraploids. Phylogenetic analyses revealed two diploid clades and a separate clade/grade of tetraploids with a distinct geographic distribution confined to western and central China, where complex mountain systems create higher levels of environmental heterogeneity. Fossil-calibrated phylogenies showed that the polyploids emerged during 7.6-2.3 million years ago, and population demographic histories largely matched the geological and climatic history of the region. Our results suggest that inheritance of the sex-determining system from the diploid progenitor as intrinsic factor and spatial isolation as extrinsic factor may have facilitated the preservation and establishment of polyploid dioecious populations.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.16902DOI Listing

Publication Analysis

Top Keywords

establishment dioecious
8
dioecious
6
evolutionary origin
4
establishment
4
origin establishment
4
dioecious diploid-tetraploid
4
diploid-tetraploid complex
4
polyploids
4
complex polyploids
4
polyploids recurrently
4

Similar Publications

Innovative multi-scale approach to study the phenotypic variation of seedling leaves in four weedy Amaranthus species.

Plant Biol (Stuttg)

December 2024

Department of Agriculture, Food, Environment and Animal Sciences (DI4A), University of Udine, Udine, Italy.

Plant phenotyping on morpho-anatomical traits through image analysis, from microscope images to large-scale acquisitions through remote sensing, represents a low-invasive tool providing insight into physiological and structural trait variation, as well as plant-environment interactions. High phenotype diversity in the genus Amaranthus includes annual weed species with high invasiveness and impact on important summer crops, and nutritive grain or vegetable crops. Identification of morpho-anatomical leaf characters at very young stages across weedy amaranths could be useful for better understanding their performance in agroecosystems.

View Article and Find Full Text PDF

Understanding the syntenic relationships among genomes is crucial to elucidate the genomic mechanisms that drive the evolution of species. The nematode Caenorhabditis is a good model for studying genomic evolution due to the well-established biology of Caenorhabditis elegans and the availability of > 50 genomes in the genus. However, effective alignment of more than ten species in Caenorhabditis has not been conducted before, and there is currently no tool to visualize the synteny of more than two species.

View Article and Find Full Text PDF

The development of CRISPR technologies provides a powerful tool for understanding the evolution and functionality of essential biological processes. Here we demonstrate successful CRISPR-Cas9 genome editing in the dioecious moss species, Ceratodon purpureus. Using an existing selection system from the distantly related hermaphroditic moss, Physcomitrium patens, we generated knock-outs of the APT reporter gene by employing CRISPR-targeted mutagenesis under expression of native U6 snRNA promoters.

View Article and Find Full Text PDF

Sex Identification Methods Using Hyperspectral Imaging and Machine Learning.

Plants (Basel)

May 2024

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.

L. is a rare dioecious species that is valued for its diverse applications and is cultivated globally. This study aimed to develop a rapid and effective method for determining the sex of a .

View Article and Find Full Text PDF

Premise: Numerous studies have found a positive association between dioecy and polyploidy; however, this association presents a theoretical conflict: While polyploids are predicted to benefit from self-reproduction for successful establishment, dioecious species cannot self-reproduce. We propose a theoretical framework to resolve this apparent conflict. We hypothesize that the inability of dioecious species to self-reproduce hinders their establishment as polyploids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!