Aim: The rate of physiological bone remodelling (PBR) occurring after implant placement has been associated with the later onset of progressive bone loss and peri-implantitis, leading to medium- and long-term implant therapy failure. It is still questionable, however, whether PBR is associated with specific bone characteristics. The aim of this study was to assess whether radiomic analysis could reveal not readily appreciable bone features useful for the prediction of PBR.

Materials And Methods: Radiomic features were extracted from the radiographs taken at implant placement (T0) using LifeX software. Because of the multi-centre design of the source study, ComBat harmonization was applied to the cohort. Different machine-learning models were trained on selected radiomic features to develop and internally validate algorithms capable of predicting high PBR. In addition, results of the algorithm were included in a multivariate analysis with other clinical variables (tissue thickness and depth of implant position) to test their independent correlation with PBR.

Results: Specific radiomic features extracted at T0 are associated with higher PBR around tissue-level implants after 3 months of unsubmerged healing (T1). In addition, taking advantage of machine-learning methods, a naive Bayes model was trained using radiomic features selected by fast correlation-based filter (FCBF), which showed the best performance in the prediction of PBR (AUC = 0.751, sensitivity = 66.0%, specificity = 68.4%, positive predictive value = 73.3%, negative predictive value = 60.5%). In addition, results of the whole model were included in a multivariate analysis with tissue thickness and depth of implant position, which were still found to be independently associated with PBR (p-value < .01).

Conclusion: The combination of radiomics and machine-learning methods seems to be a promising approach for the early prediction of PBR. Such an innovative approach could be also used for the study of not readily disclosed bone characteristics, thus helping to explain not fully understood clinical phenomena. Although promising, the performance of the radiomic model should be improved in terms of specificity and sensitivity by further studies in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jcpe.13797DOI Listing

Publication Analysis

Top Keywords

radiomic features
20
features extracted
12
physiological bone
8
bone remodelling
8
implant placement
8
bone characteristics
8
included multivariate
8
multivariate analysis
8
tissue thickness
8
thickness depth
8

Similar Publications

Objective: To develop a predictive model for microvascular invasion (MVI) in hepatocellular carcinoma (HCC) through radiomics analysis, integrating data from both enhanced computed tomography (CT) and magnetic resonance imaging (MRI).

Methods: A retrospective analysis was conducted on 93 HCC patients who underwent partial hepatectomy. The gold standard for MVI was based on the histopathological diagnosis of the tissue.

View Article and Find Full Text PDF

Purpose: Bodyweight loss is commonly found in Nasopharyngeal Carcinoma patients during Concurrent Chemo-radiotherapy (CCRT) and has implications for treatment decisions. However, the prognostic value of this weight loss remains uncertain. We addressed it by proposing a novel index Weight Censorial Score (WCS) that characterizes the patient-specific CCRT response on actual to estimated weight loss.

View Article and Find Full Text PDF

Purpose: We hypothesised that applying radiomics to [F]PSMA-1007 PET/CT images could help distinguish Unspecific Bone Uptakes (UBUs) from bone metastases in prostate cancer (PCa) patients. We compared the performance of radiomic features to human visual interpretation.

Materials And Methods: We retrospectively analysed 102 hormone-sensitive PCa patients who underwent [F]PSMA-1007 PET/CT and exhibited at least one focal bone uptake with known clinical follow-up (reference standard).

View Article and Find Full Text PDF

Objectives: To evaluate the feasibility of utilizing cardiac computer tomography (CT) images for extracting the radiomic features of the myocardium at the junction between the left atrial appendage (LAA) and the left atrium (LA) in patients with atrial fibrillation (AF) and to evaluate its asscociation with the risk of AF.

Methods: A retrospective analysis was conducted on 82 cases of AF and 56 cases in the control group who underwent cardiac CT at our hospital from May 2022 to May 2023, with recorded clinical information. The morphological parameters of the LAA were measured.

View Article and Find Full Text PDF

Prognostic value of multi-PLD ASL radiomics in acute ischemic stroke.

Front Neurol

January 2025

Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China.

Introduction: Early prognosis prediction of acute ischemic stroke (AIS) can support clinicians in choosing personalized treatment plans. The aim of this study is to develop a machine learning (ML) model that uses multiple post-labeling delay times (multi-PLD) arterial spin labeling (ASL) radiomics features to achieve early and precise prediction of AIS prognosis.

Methods: This study enrolled 102 AIS patients admitted between December 2020 and September 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!