A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrical Sympathetic Neuromodulation Protects Bone Marrow Niche and Drives Hematopoietic Regeneration during Chemotherapy. | LitMetric

The sympathetic nervous system (SNS) of the bone marrow regulates the regeneration and mobilization of hematopoietic stem cells. Chemotherapy can damage bone marrow SNS, which impairs hematopoietic regeneration and aggravates hematologic toxicities. This leads to long-term bone marrow niche damage and increases mortality in patients undergoing chemotherapy. Electrical neuromodulation has been used to improve functional recovery after peripheral nerve injury. This study demonstrates that electrical sympathetic neuromodulation (ESN) of bone marrow can protect the bone marrow niche from chemotherapy-induced injury. Using carboplatin-treated rats, the SNS via the sciatic nerve innervating the femoral marrow with the effective protocol for bone marrow sympathetic activation is electrically stimulated. ESN can mediate several hematopoietic stem cells maintenance factors and promote hematopoietic regeneration after chemotherapy. It also activates adrenergic signals and reduces the release of pro-inflammatory cytokines, particularly interleukin-1 β, which contribute to chemotherapy-related nerve injury. Consequently, the severity of chemotherapy-related leukopenia, thrombocytopenia, and mortality can be reduced by ESN. As a result, in contrast to current drug-based treatment, such as granulocyte colony-stimulating factor, ESN can be a disruptive adjuvant treatment by protecting and modulating bone marrow function to reduce hematologic toxicity during chemotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202201300DOI Listing

Publication Analysis

Top Keywords

bone marrow
32
marrow niche
12
hematopoietic regeneration
12
marrow
9
electrical sympathetic
8
sympathetic neuromodulation
8
bone
8
regeneration chemotherapy
8
hematopoietic stem
8
stem cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!