Physiological and biochemical response of P. fortunei to Mn exposure.

Environ Sci Pollut Res Int

College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.

Published: April 2023

Fast-growing woody plants with metal tolerance are considered as potential candidates for phytoremediation. P. fortunei is widely distributed in China. Herein, the Mn tolerance ability and physiological and biochemical response of P. fortunei to Mn were explored in this study. Results showed that a low concentration of Mn exposure was favorable for the growth of P. fortunei, while it was inhibited in high Mn exposure. P. fortunei showed high tolerance to Mn (10 mmol/L). The microstructure of P. fortunei organs revealed that the Mn tolerance of P. fortunei was related to the compartmentalization of the cell wall. The subcellular distribution of Mn in P. fortunei showed that Mn was mainly stored in the cell wall fraction (39%-90%). Under Mn exposure, the proportion of pectate and protein-integrated Mn increased by 5%-29% in P. fortunei. The changes of function groups (-CH and -COOH) in P. fortunei might be related to the reduction of Mn toxicity in plant cells in the way of chelation. Additionally, P. fortunei leaves resisted Mn toxicity by increasing the activities of CAT and SOD under low Mn concentration exposure, but it might be destroyed under excessive Mn concentration exposure. P. fortunei might be used as a candidate plant for low concentration Mn tailing restoration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-25311-2DOI Listing

Publication Analysis

Top Keywords

fortunei
12
low concentration
12
concentration exposure
12
physiological biochemical
8
biochemical response
8
response fortunei
8
exposure fortunei
8
cell wall
8
exposure
6
fortunei exposure
4

Similar Publications

A rare glisoprenin analogue from an endophytic fungus sp. F1.

Nat Prod Res

January 2025

Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China.

Glisoprenins are unique fungal polyisoprenepolyols with nine isoprene units from spp. Herein, glisoprenin G (), a new member of glisoprenins group, along with a biosynthetically related known analogue glisoprenin F (), were isolated and identified from an endophytic fungus, sp. F1, harboured in the roots of the Chinese medicinal plant .

View Article and Find Full Text PDF

Anti‑proliferative effects of in a model for triple negative breast cancer.

Oncol Lett

February 2025

American Foundation for Chinese Medicine, New York, NY 10001, USA.

Triple negative breast cancer (TNBC) is characterized by the absence of hormones and growth factor receptors. It is typically responsive to anthracycline/taxol-based conventional chemotherapy. However, major therapeutic limitations include systemic toxicity and acquired resistance to chemotherapeutics.

View Article and Find Full Text PDF

Biofouling in freshwater and marine environments developed on man-made aquatic surfaces causes significant economic losses. Still, this problem is magnified when it comes to invasive species, such as the golden mussel. One of the alternatives to combat it is the use of antifouling solutions; however, the vast majority focus on solutions for the marine environment.

View Article and Find Full Text PDF

Acetyl-TAG (3-acetyl-1,2-diacylglycerol), unique triacylglycerols (TAG) possessing an acetate group at the -3 position, exhibit valuable properties, such as reduced viscosity and freezing points. Previous attempts to engineer acetyl-TAG production in oilseed crops did not achieve the high levels found in naturally producing seeds. Here, we demonstrate the successful generation of camelina and pennycress transgenic lines accumulating nearly pure acetyl-TAG at 93 mol% and 98 mol%, respectively.

View Article and Find Full Text PDF

The use of woody species for the remediation of heavy metal-contaminated soils is an environmentally friendly and economically viable strategy. This study investigates the phytoextraction abilities of 15 woody species for copper, lead and zinc in contaminated soil. The results indicated that all species showed phytoextraction ability, with metal concentrations varying from 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!