The occurrence and removal efficiencies of organophosphorus flame retardants (OPFRs) by traditional treatment processes (pre-flocculation, sand filtration, and post-chlorination processes) and advanced treatment processes (i.e., ozone and granular activated carbon (GAC), ultraviolet/hydrogen peroxide (UV/HO), GAC alone, ultrafiltration membrane, nanofiltration membrane) were examined in two municipal plants and a pilot plant in Jinan, China. The concentrations of six OPFRs in raw waters were at levels of 16.8-100.0 ng/L, and three OPFRs were below the detection limits. The traditional treatment processes could not effectively remove the OPFRs (the removal efficiency was - 12.0-15.4%). The advanced oxidation with ozone and GAC (the removal efficiency was 35.6-60.3%) or UV/HO and GAC processes (the removal efficiency was 68.0-86.7%) were more effective than the traditional water treatment processes. The removal efficiencies of ultrafiltration process for the OPFRs was 11.2-69.8% which were positively correlated with the logKow values of OPFRs. The nanofiltration membrane process with ultrafiltration membrane process as the pretreatment was the most effective process (the removal efficiencies were almost to 100%). These results imply that the combination of ultrafiltration membrane and nanofiltration membrane is an effective measure in the treatment of OPFRs in municipal drinking water plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-25916-7DOI Listing

Publication Analysis

Top Keywords

treatment processes
16
removal efficiencies
12
ultrafiltration membrane
12
nanofiltration membrane
12
removal efficiency
12
organophosphorus flame
8
flame retardants
8
drinking water
8
jinan china
8
traditional treatment
8

Similar Publications

Unraveling the Trade-Off Effect of Pyrogenic Carbons Between Biopseudocapacitors and Bioconductors During Anaerobic Methanogenesis.

Environ Sci Technol

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.

Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.

View Article and Find Full Text PDF

Background: Considering that peripheral blood biomarkers are prognostic predictors for several human tumors, this study aimed to comparatively analyze the association of hematological alterations with the incidence of epithelial dysplasia (ED) and oral squamous cell carcinoma (OSCC) in male and female mice treated with 4-nitroquinoline-N-oxide (4NQO) and ethanol (EtOH).

Methods: 120 C57Bl/6J mice (60 males and 60 females) were allocated to four groups (n = 15). They were treated firstly either with 5 mg/mL propylene glycol (PPG) or 100 μg/mL 4NQO in the drinking water for 10 weeks, followed by sterilized water (HO) or 8% EtOH (v/v) for 15 weeks, as follows: PPG/HO, PPG/EtOH, 4NQO/HO, and 4NQO/EtOH (CEUA-UFU, #020/21).

View Article and Find Full Text PDF

Pharmaceuticals removal from aqueous solution by water hyacinth (Eichhornia crassipes): a comprehensive investigation of kinetics, equilibrium, and thermodynamics.

Environ Sci Pollut Res Int

January 2025

Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia.

This study shows the efficiency of WH-C450, an adsorbent obtained from water hyacinth (WH) biomass, in the removal of sulfamethoxazole (SMX) from aqueous solutions. The process involves calcination of WH at 450 °C to produce an optimal adsorbent material capable of removing up to 73% of SMX and maximum SMX adsorption capacity of 132.23 mg/g.

View Article and Find Full Text PDF

Purpose: In Denmark, the prevalence of head and neck cancer is approximately 17.000, and the incidence is increasing. The disease and treatment of this condition may lead to severe physical, psychological, and social consequences.

View Article and Find Full Text PDF

Purpose: The study explores the role of multimodal imaging techniques, such as [F]F-PSMA-1007 PET/CT and multiparametric MRI (mpMRI), in predicting the ISUP (International Society of Urological Pathology) grading of prostate cancer. The goal is to enhance diagnostic accuracy and improve clinical decision-making by integrating these advanced imaging modalities with clinical variables. In particular, the study investigates the application of few-shot learning to address the challenge of limited data in prostate cancer imaging, which is often a common issue in medical research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!