Foundation species like the eastern oyster (Crassostrea virginica) create complex habitats for organisms across multiple trophic levels. Historic declines in oyster abundance have prompted decades of restoration efforts. However, it remains unclear how long it takes for restored reefs to resemble the trophic complexity of natural reefs. We used a space-for-time approach to examine community succession of restored reefs ranging in age from 3 to 22 years old in coastal North Carolina, surveying both free-living taxa and parasite communities and comparing them to natural reefs that are decades old. Trophically transmitted parasites can serve as valuable biodiversity surrogates, sometimes providing greater information about a system or question than their free-living counterparts. We found that the diversity of free-living taxa was highly variable and did not differ among new (<10 years), old (20 years), and natural reefs. Conversely, parasite diversity increased with elapsed time after restoration, and parasite communities in older restored reefs resembled those found in natural reefs. Our study also revealed that oyster toadfish (Opsanus tau) act as a key host species capable of facilitating parasite transmission and trophic ascent in oyster reef food webs. Overall, our results suggest that trophic complexity in restored oyster reefs requires at least 8 years to resemble that found in natural reefs. This work adds to a growing body of evidence demonstrating how parasites can serve as biodiversity surrogates, proxies for the presence of additional taxa that are often difficult or impractical to sample. Given the multiplicity of links formed with their hosts, parasites offer a powerful tool for quantifying diversity and trophic complexity in environmental monitoring studies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eap.2825DOI Listing

Publication Analysis

Top Keywords

trophic complexity
8
succession restored
8
restored reefs
8
natural reefs
8
free-living taxa
8
reefs
5
parasites indicate
4
indicate trophic
4
complexity faunal
4
faunal succession
4

Similar Publications

A diverse orchard with fruit fly hosts may provide information about trophic relationships, including new insights into beneficial insects. We evaluated the composition of the fruit fly complex to provide information on tephritid species, parasitoids and multitrophic interactions for the southern region of Minas Gerais, Brazil. Sampling was carried out using traps and by collecting fruits from plants and/or the ground according to availability/the fruiting period.

View Article and Find Full Text PDF

As transitional ecosystems between land and sea, estuaries are characterized by a unique environment that supports complex and diverse microbial communities. A comprehensive analysis of microbial diversity and ecological processes at different trophic levels is crucial for understanding the ecological functions of estuarine ecosystems. In this study, we systematically analyzed the diversity patterns, community assembly, and environmental adaptability of bacterial and protist communities using high-throughput sequencing techniques.

View Article and Find Full Text PDF

Understanding how land use affects temporal stability is crucial to preserve biodiversity and ecosystem functions. Yet, the mechanistic links between land-use intensity and stability-driving mechanisms remain unclear, with functional traits likely playing a key role. Using 13 years of data from 300 sites in Germany, we tested whether and how trait-based community features mediate the effect of land-use intensity on acknowledged stability drivers (compensatory dynamics, portfolio effect, and dominant species variability), within and across plant and arthropod communities.

View Article and Find Full Text PDF

Complex regional pain syndrome (CRPS) is a chronic pain condition characterized by significant sensory, motor, and autonomic dysfunction, often following trauma or nerve injury. Historically known as causalgia and reflex sympathetic dystrophy, CRPS manifests as severe, disproportionate pain, often accompanied by hyperalgesia, allodynia, trophic changes, and motor impairments. Classified into type I (without nerve injury) and type II (associated with nerve damage), CRPS exhibits a complex pathophysiology involving peripheral and central sensitization, neurogenic inflammation, maladaptive brain plasticity, and potential autoimmune and psychological influences.

View Article and Find Full Text PDF

Nanoplastics in focus: Exploring interdisciplinary approaches and future directions.

NanoImpact

January 2025

Géosciences Rennes, CNRS/Université Rennes, 263 av. Général Leclerc, 35000 Rennes, France.

Nanoplastics (NPs) are gaining increasing attention due to their widespread distribution and potential environmental and biological impacts. Spanning a variety of ecosystems - from soils and rivers to oceans and polar ice - NPs interact with complex biological and geochemical processes, posing risks to organisms across multiple trophic levels. Despite their growing presence, understanding the behavior, transport, and toxicity of nanoplastics remains challenging due to their diverse physical and chemical properties as well as the heterogeneity of environmental matrices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!