In this work, laboratory- and large-scale methods were tested for purification of a human immunodeficiency virus (HIV) vaccine candidate, based on recombinant vesicular stomatitis virus (rVSV). First step of the purification, the clarification of the rVSVs produced in serum-free cell culture medium, was tested by centrifugation and filtration using different filtration media and pore sizes (0.45 to 30 µm). To reduce the supernatant volume and process time, the clarified sample was concentrated by ultrafiltration either using tangential flow filtration or centrifugal-based filtration units, depending on the process scale. The final purification step at laboratory-scale, was carried out by density gradient ultracentrifugation, the recovery of which was compared with chromatographic purification at large-scale. The virus preparations were analyzed using dynamic light scattering to verify the virus size and transmission electron microscopy for purity and virus morphology. Density gradient ultracentrifugation allowed the recovery of ≥ 80% infectious particles and reduced the contaminant DNA and host cell proteins relatively to standard ultracentrifugation pelleting using a sucrose cushion. At large-scale, weak and strong anion-exchangers were tested and compared. The best columns allowed infectious virus recoveries as high as 77% and eliminated 92% of host cell proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2023.02.058 | DOI Listing |
Sci Rep
January 2025
Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
Extracellular vesicles (EVs) are nanosized lipid bilayer particles released by various cellular organisms that carry an array of bioactive molecules. EVs have diagnostic potential, as they play a role in intercellular interspecies communication, and could be applied in drug delivery. In contrast to mammalian cell-derived EVs, the study of EVs from bacteria, particularly Gram-positive bacteria, received less research attention.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.
View Article and Find Full Text PDFVet Q
December 2025
Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
Senecavirus A (SVA) is the causative agent associated with porcine idiopathic vesicular disease (PIVD), a condition indistinguishable from other foreign vesicular diseases affecting pigs. This complicates differential diagnosis and impacts the global swine industry. A diagnostic ELISA based on a non-structural viral protein has been developed, capable of distinguishing infected from vaccinated animals (DIVA).
View Article and Find Full Text PDFViruses
December 2024
School of Medicine, Zhejiang University, Hangzhou 310063, China.
The Junín virus (JUNV) is one of the New World arenaviruses that cause severe hemorrhagic fever. Human transferrin receptor 1 (hTfR1) has been identified as the main receptor for JUNV for virus entry into host cells. To date, no treatment has been approved for JUNV.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Background: Severe fever with thrombocytopenia syndrome virus (SFTSV) is a recently emerged tickborne virus in east Asia with over 18,000 confirmed cases. With a high case fatality ratio, SFTSV has been designated a high priority pathogen by the WHO and the NIAID. Despite this, there are currently no approved therapies or vaccines to treat or prevent SFTS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!