Phylogenomic analyses of Camellia support reticulate evolution among major clades.

Mol Phylogenet Evol

Ecological Engineering and State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China. Electronic address:

Published: May 2023

Camellia (Theaceae) is a morphologically highly diverse genus of flowering plants and includes many famous species with high economic value, and the phylogeny of this genus is not fully resolved. We used 95 transcriptomes from 87 Camellia species and identified 1481 low-copy genes to conduct a detailed analysis of the phylogeny of this genus according to various data-screening criteria. The results show that, very different from the two existing classification systems of Camellia, 87 species are grouped into 8 main clades and two independent species, and that all 8 clades except Clade 8 were strongly supported by almost all the coalescent or concatenated trees using different gene subsets. However, the relationships among these clades were weakly supported and different from analyses using different gene subsets; furthermore, they do not agree with the phylogeny from chloroplast genomes of Camellia. Additional analyses support reticulate evolution (probably resulting from introgression or hybridization) among some major Camellia lineages, providing explanation for extensive gene tree conflicts. Furthermore, we inferred that together with the formation of East Asian subtropical evergreen broad-leaved forests, Camellia underwent a radiative divergence of major clades at 23 ∼ 19 Ma in the late Miocene then had a subsequent species burst at 10 ∼ 5 Ma. Principal component and cluster analyses provides new insights into morphological changes underlying the evolution of Camellia and a reference to further clarify subgenus and sections of this genus. The comprehensive study here including a nuclear phylogeny and other analyses reveal the rapid evolutionary history of Camellia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2023.107744DOI Listing

Publication Analysis

Top Keywords

camellia
9
support reticulate
8
reticulate evolution
8
major clades
8
phylogeny genus
8
camellia species
8
gene subsets
8
clades
5
species
5
phylogenomic analyses
4

Similar Publications

Emerging multidrug-resistant (MDR) strains are the main challenges to the progression of new drug discovery. To diminish infectious disease-causing pathogens, new antibiotics are required while the drying pipeline of potent antibiotics is adding to the severity. Plant secondary metabolites or phytochemicals including alkaloids, phenols, flavonoids, and terpenes have successfully demonstrated their inhibitory potential against the drug-resistant pathogens.

View Article and Find Full Text PDF

Genetic structure and demographic analysis of a true single-population species, Camellia azalea.

BMC Plant Biol

December 2024

Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.

Single-population species (SPS) consist of only one natural population and often are at high risk of extinction. Although almost all species must go through this special stage in their evolutionary process, there is little understanding of how SPS survives. Camellia azalea C.

View Article and Find Full Text PDF

Metabolic mechanism, responses, and functions of genes HDH1, HDH3, and GST1 of tea (Camellia sinensis L.) to the insecticide thiamethoxam.

J Hazard Mater

December 2024

Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States; State Key Laboratory of Tea Plant Biology and Utilization; School of Tea Science, Anhui Agricultural University, Hefei, 230036, China. Electronic address:

Misuse of insecticides such as thiamethoxam (TMX) not only affects the quality of tea but also leaves residues in tea. Therefore, exploring the metabolic mechanisms of TMX in tea plants can evaluate effects of pesticides on the environment and human health. Here, effects of TMX on tea plants were studied.

View Article and Find Full Text PDF

Regular Consumption of Black Tea Kombucha Modulates the Gut Microbiota in Individuals with and Without Obesity.

J Nutr

December 2024

Bioactive Compounds and Carbohydrates (BIOCARB) Research Group - Department of Food Science and Technology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa, MG, 36570-900, Brazil. Electronic address:

Background: Kombucha, a fermented beverage obtained from a Symbiotic Culture of Bacteria and Yeast (SCOBY), has shown potential in modulating gut microbiota, although no clinical trials have been done.

Objective: We aimed to evaluate the effects of regular black tea kombucha consumption on intestinal health in individuals with and without obesity.

Methods: A pre-post clinical intervention study was conducted lasting eight weeks.

View Article and Find Full Text PDF

Cold stress significantly limits the growth and yield of tea plants (Camellia sinensis (L.) O. Kuntze), particularly in northern China, may lead to huge economic losses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!