Machine learning-decision tree classifiers in psychiatric assessment: An application to the diagnosis of major depressive disorder.

Psychiatry Res

Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Via Venezia 14, 35131, Padova, Italy.

Published: April 2023

This work illustrates the advantages of using machine learning classifiers in psychiatric assessment. Machine learning-decision trees (ML-DTs) represent a new approach to scoring and interpreting psychodiagnostic test data that allows for increasing assessment accuracy and efficiency. The approach is outlined in an easy yet detailed way, and its application is illustrated on real psychodiagnostic test data. Specifically, cross-sectional data concerning nonclinical and clinical Japanese populations were taken from a panel registered with an internet survey company. Responses to the Patient Health Questionnaire-9 (PHQ-9) underwent receiver operating characteristic (ROC) curve, DSM algorithm, and ML-DT analyses. The results showed greater diagnostic accuracy for ML-DT (0.71-0.75) compared with the DSM algorithm (0.69) and ROC curves (0.70-0.71). Moreover, ML-DT enabled classifying participants as having or not having a diagnosis of depression using, on average, the information from 2.99 out of 9 items (SD = 1.35). The application showed that ML-DTs can provide information of high clinical value to integrate traditional psychometric methods. The resulting assessments are informative, accurate, and efficient.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psychres.2023.115127DOI Listing

Publication Analysis

Top Keywords

machine learning-decision
8
classifiers psychiatric
8
psychiatric assessment
8
psychodiagnostic test
8
test data
8
dsm algorithm
8
learning-decision tree
4
tree classifiers
4
assessment application
4
application diagnosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!