Swimming archaea are propelled by a filamentous structure called the archaellum. The first step for the structural characterization of this filament is its isolation. Here we provide various methods that allow for the isolation of archaella filaments from well-studied archaeal model organisms. Archaella filaments have been successfully extracted from organisms belonging to different archaeal phyla, e.g., euryarchaeal methanogens such as Methanococcus voltae, and crenarchaeal hyperthermoacidophiles like Sulfolobus acidocaldarius. The filament isolation protocols that we provide in this chapter follow one of two strategies: either the filaments are sheared or extracted from whole cells by detergent extraction, prior to further final purification by centrifugation methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3060-0_16 | DOI Listing |
Methods Mol Biol
January 2025
Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA.
The actin cytoskeleton serves an important, but poorly characterized, role in controlling granule exocytosis. The dynamic nature of actin remodeling allows it to act both as a barrier to prevent indiscriminate granule release and as a facilitator of membrane fusion. In its capacity to promote exocytosis, filamentous actin binds to components of the exocytotic machinery through actin binding proteins, but also through direct interactions with SNAREs.
View Article and Find Full Text PDFThe eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome.
View Article and Find Full Text PDFVet Res Commun
January 2025
Department of Clinical Sciences and Translational Medicine, Faculty of Medicine, University of Rome "Tor Vergata", Via Montpellier 1, Rome, 001 33, Italy.
In our study, fancy southern platyfish Xiphophorus maculatus (Cyprinodontiformes, Poeciliidae) were examined due to breathing disorders and mortality. Fish came from Vietnam farm and were redistributed by international wholesaler. In fish, loss of appetite and gasping near the water surface was observed.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
January 2025
Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, Bordeaux, France.
Single molecule tracking and super-resolution microscopy of integrin adhesion proteins and actin in developing Drosophila muscle attachment sites reveals that nanotopography triggered by Arp2/3-dependent actin protrusions promotes stable adhesion formation. The nanodomains formed during this process confine the diffusion of integrins and promote their immobilization. Spatial confinement is also applied to the motion of actin filaments, resulting in enhanced mechanical connection with the integrin adhesion complex.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
January 2025
Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
Dyneins are huge motor protein complexes that are essential for cell motility, cell division, and intracellular transport. Dyneins are classified into three major subfamilies, namely cytoplasmic, intraflagellar-transport (IFT), and ciliary dyneins, based on their intracellular localization and functions. Recently, several near-atomic resolution structures have been reported for cytoplasmic/IFT dyneins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!