Molecular basis for differential activation of p101 and p84 complexes of PI3Kγ by Ras and GPCRs.

Cell Rep

Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada. Electronic address:

Published: March 2023

Class IB phosphoinositide 3-kinase (PI3Kγ) is activated in immune cells and can form two distinct complexes (p110γ-p84 and p110γ-p101), which are differentially activated by G protein-coupled receptors (GPCRs) and Ras. Using a combination of X-ray crystallography, hydrogen deuterium exchange mass spectrometry (HDX-MS), electron microscopy, molecular modeling, single-molecule imaging, and activity assays, we identify molecular differences between p110γ-p84 and p110γ-p101 that explain their differential membrane recruitment and activation by Ras and GPCRs. The p110γ-p84 complex is dynamic compared with p110γ-p101. While p110γ-p101 is robustly recruited by Gβγ subunits, p110γ-p84 is weakly recruited to membranes by Gβγ subunits alone and requires recruitment by Ras to allow for Gβγ activation. We mapped two distinct Gβγ interfaces on p101 and the p110γ helical domain, with differences in the C-terminal domain of p84 and p101 conferring sensitivity of p110γ-p101 to Gβγ activation. Overall, our work provides key insight into the molecular basis for how PI3Kγ complexes are activated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068899PMC
http://dx.doi.org/10.1016/j.celrep.2023.112172DOI Listing

Publication Analysis

Top Keywords

molecular basis
8
ras gpcrs
8
p110γ-p84 p110γ-p101
8
gβγ subunits
8
gβγ activation
8
p110γ-p101
5
gβγ
5
molecular
4
basis differential
4
activation
4

Similar Publications

Background: An estimated 17% of all couples worldwide are involuntarily childless (infertile). The clinically identifiable causes of infertility can be found in the male or female partner or in both. The molecular pathophysiology of infertility still remains unclear in many cases but is increasingly being revealed by genetic analyses.

View Article and Find Full Text PDF

Silymarin: a promising modulator of apoptosis and survival signaling in cancer.

Discov Oncol

January 2025

Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.

Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years.

View Article and Find Full Text PDF

Energy decomposition analysis (EDA) based on density functional theory (DFT) and self-consistent field (SCF) calculations has become widely used for understanding intermolecular interactions. This work reports a new approach to EDA for post-SCF wave functions based on closed-shell restricted second-order Mo̷ller-Plesset (MP2) together with an efficient implementation that generalizes the successful SCF-level second-generation absolutely localized molecular orbital EDA approach, ALMO-EDA-II, and improves upon MP2 ALMO-EDA-I. The new MP2 ALMO-EDA-II provides distinct energy contributions for a frozen interaction energy containing permanent electrostatics and Pauli repulsions, polarized energy-yielding induced electrostatics, dispersion-corrected energy, and the fully relaxed energy, which describes charge transfer.

View Article and Find Full Text PDF

Objective: Anorexia nervosa (AN) is an eating disorder characterized by severe weight loss and associated with hyperactivity and circadian rhythm disruption. However, the cellular basis of circadian rhythm disruption is poorly understood. Glial cells in the suprachiasmatic nucleus (SCN), the principal circadian pacemaker, are involved in regulating circadian rhythms.

View Article and Find Full Text PDF

High-Efficiency Electrochemiluminescence Biosensor with Antifouling and Antibacterial Functions for Sensitive and Accurate Analysis of Chloramphenicol in Seawater.

Anal Chem

January 2025

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

In marine environmental monitoring, due to the presence of a large number of interfering proteins and bacteria in seawater, it is of great significance to construct an efficient sensing interface with antifouling and antibacterial functions to avoid the aforementioned interferences. On this basis, the zwitterionic hydrogel based on sulfobetaine methacrylate (SBMA) and bovine serum albumin (BSA) was developed as an antifouling and antibacterial coating. The combination of hydration of zwitterions and hydrophilicity of hydrogels endows BSA@PSBMA with good antiadsorption ability, which effectively hinders the adhesion of proteins and bacteria, thereby improving the detection sensitivity of the biosensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!