AI Article Synopsis

  • Researchers developed tough silk nanofiber-derived cryogels that promote both angiogenesis (blood vessel formation) and osteogenesis (bone formation) for potential use in bone regeneration.
  • The cryogels incorporate deferoxamine (DFO), which enhances blood vessel growth, and their mechanical properties (how stiff they are) can be adjusted by changing the amount of silk nanofibers used.
  • In animal tests, these materials demonstrated improved healing of bone tissue in rat femur defects, showing promise for future applications in regenerative medicine.

Article Abstract

Tough porous cryogels with angiogenesis and osteogenesis features remain a design challenge for utility in bone regeneration. Here, building off of the recent efforts to generate tough silk nanofiber-derived cryogels with osteogenic activity, deferoxamine (DFO) is loaded in silk nanofiber-derived cryogels to introduce angiogenic capacity. Both the mechanical cues (stiffness) and the sustained release of DFO from the gels are controlled by tuning the concentration of silk nanofibers in the system, achieving a modulus above 400 kPa and slow release of the DFO over 60 days. The modulus of the cryogels and the released DFO induce osteogenic and angiogenic activity, which facilitates bone regeneration in vivo in femur defects in rat, resulting in faster regeneration of vascularized bone tissue. The tunable physical and chemical cues derived from these nanofibrous-microporous structures support the potential for silk cryogels in bone tissue regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202203050DOI Listing

Publication Analysis

Top Keywords

silk nanofiber-derived
12
nanofiber-derived cryogels
12
tough porous
8
cryogels osteogenic
8
osteogenic angiogenic
8
angiogenic capacity
8
bone regeneration
8
release dfo
8
bone tissue
8
cryogels
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!