Boosting the performance and durability of heterogeneous electrodes for solid oxide electrochemical cells utilizing a data-driven powder-to-power framework.

Sci Bull (Beijing)

State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China; National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300350, China. Electronic address:

Published: March 2023

Solid oxide electrochemical cells (SOCs) hold potential as a critical component in the future landscape of renewable energy storage and conversion systems. However, the commercialization of SOCs still requires further breakthroughs in new material development and engineering designs to achieve high performance and durability. In this study, a data-driven powder-to-power framework has been presented, fully digitizing the morphology evolution of heterogeneous electrodes from fabrication to long-term operation. This framework enables accurate performance prediction over the full life cycle. The intrinsic correlation between microstructural parameters and electrode durability is elucidated through parameter analysis. Rational control of the ion-conducting phase volume fraction can effectively suppress Ni coarsening and mitigate the excessive ohmic loss caused by Ni migration. The initial and degraded electrode performances are attributed to the interplay of multiple parameters. A practical optimization strategy to enhance the initial performance and durability of the electrode is proposed through the construction of the surrogate model and the application of the optimization algorithm. The optimal electrode parameters are determined to accommodate various maximum operation time requirements. By implementing the data-driven powder-to-power framework, it is possible to reduce the degradation rate of Ni-based electrodes from 2.132% to 0.703% kh with a required maximum operation time of over 50,000 h.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2023.02.019DOI Listing

Publication Analysis

Top Keywords

performance durability
12
data-driven powder-to-power
12
powder-to-power framework
12
heterogeneous electrodes
8
solid oxide
8
oxide electrochemical
8
electrochemical cells
8
maximum operation
8
operation time
8
boosting performance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!