Glaucoma is a chronic disease that requires lifelong treatment, whereas, discomfort caused by frequent medication may affect the quality of life. Moreover, the therapeutic efficacy of traditional local administration was unsatisfactory due to the rapid ocular clearance mechanism and the ocular barrier. Herein, a triple crosslinked micelle-hydrogel lacrimal implant with low polymer content was fabricated for localized and prolonged therapy of glaucoma. Latanoprost and timolol were simultaneously entrapped in the PEG-PLA micelles with high encapsulation efficiency and further loaded into the triple crosslinked hydrogel, facilitating a double sustained release of drugs. Subsequently, the implant was constructed by a unique molecular orientation fixation technology, which enables the implant to be fixed in the lacrimal duct. The triple crosslinked micelle-hydrogel lacrimal implant manifested a distinguished physicochemical characterization to sustain the release of latanoprost and timolol. In vitro release experiment demonstrated the duration of two drugs was extended for up to 28 days. The in vivo test of elevated intraocular pressure (IOP) in a rabbit model revealed that the IOP-lowering effects were sustained longer than 28 days as expected. The relative pharmacological availability (PA) of lacrimal implants was 5.7 times greater than that of the eye drops. The results of the studies on ocular irritation and histological examination demonstrated the good safety of the lacrimal implant. In conclusion, the triple crosslinked micelle-hydrogel lacrimal implant could effectively lower the IOP with splendid compatibility, demonstrating the promising prospect in the long-term noninvasive treatment of glaucoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2023.02.011 | DOI Listing |
Anticancer Drugs
January 2025
Department of Thoracic Surgery, Affiliated Hospital of Shaoxing University, The Shaoxing Municipal Hospital, Shaoxing, Zhejiang, China.
Intelligent hydrogels are promising in constructing scaffolds for the controlled delivery of drugs. Here, a dual thermo- and pH-responsive hydrogel called PCG [poly (N-isopropyl acrylamide-co-itaconic acid)/chitosan/glycerophosphate (PNI/CS/GP)] was established as the carrier of 5-fluorouracil (5-FU) for triple-negative breast cancer (TNBC) treatment. The PCG hydrogel was fabricated by blending synthesized [poly (N-isopropyl acrylamide-co-itaconic acid), pNIAAm-co-IA, PNI] with CS in the presence of GP as a crosslinking agent.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China. Electronic address:
This study aimed to investigate the structural characteristics of Stichopus horrens collagen (SHC), Holothuria scabra collagen (HSC), and Holothuria leucospilota collagen (HLC) and to assess the effect of transglutaminase (TGase) on their film-forming properties. The results indicated that the collagens from three species of sea cucumbers were type I collagen with a complete triple helical structure. The thermal denaturation temperature of HLC (34.
View Article and Find Full Text PDFInt J Pharm
January 2025
Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India. Electronic address:
J Control Release
January 2025
Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, DuShuHu High Education Zone, Suzhou, Jiangsu Province 215123, China. Electronic address:
Cancer stem cells (CSCs) play an important role in the development of triple-negative breast cancer (TNBC), including metastasis, invasion, tumorigenicity, and drug resistance. Moreover, non-CSCs can spontaneously transform into CSCs in special tumor microenvironments, thereby leading to poor prognosis or even failed treatments. Therefore, reversing CSCs into normal tumor cells in a sustained-acting manner is a promising strategy.
View Article and Find Full Text PDFChem Res Toxicol
December 2024
Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States.
DNA interstrand cross-links (ICLs) are the sources of the cytotoxicity of many anticancer agents. Selenium compounds showed great potential as anticancer drugs. In this work, we synthesized a binaphthalene analog containing phenyl selenide (-SePh) as the leaving group and investigated its photochemical reactivity toward DNA as well as its cytotoxicity and selectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!