Despite the rapid application of next-generation sequencing (NGS) technologies, target sequencing in regions of the genome is often required to diagnose many genetic diseases. Target enrichment can be an effective factor in reducing the cost of sequencing and the duration of sequencing. Recently, several clustered system regularly interspaced short palindromic repeats (CRISPR)-based methods (amplification-free sequencing) have been developed to target enrichment in combination with one of the NGS platforms. CRISPR-based target enrichment strategies act as an auxiliary tool to improve NGS analytical performance, thereby indirectly facilitating nucleic acid detection. The direct DNA cleavage approach by CRISPR-CRISPR-associated (Cas) at genome-specific sites enhances the possibility of separating native large fragments from disease-related genomic regions. The CRISPR-Cas can isolate the target region without any amplification; subsequently, long-read sequencing technologies were also implemented. These methods, as promising tools, have the ability to assess genetic and epigenetic composition for clinical application and treatment responses in cancer precision medicine. By modifying CRISPR-based enrichment protocols, it is possible to identify different types of mutations, including structural variants, short tandem repeats, fusion genes, and mobile elements. The Cas9 can specifically eliminate wild-type sequences, and it also enables the enrichment and detection of small amounts of tumor DNA fragments among the highly heterogeneous fragments of wild-type DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmoldx.2023.01.010 | DOI Listing |
PLoS One
January 2025
Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China.
Background: The morbidity and mortality of sepsis remain high, and so far specific diagnostic and therapeutic means are lacking.
Objective: To screen novel biomarkers for sepsis.
Methods: Raw sepsis data were downloaded from the Chinese National Genebank (CNGBdb) and screened for differentially expressed RNAs.
Cancer Res
January 2025
Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
Intrahepatic cholangiocarcinoma (iCCA) is a lethal malignancy affecting the liver and biliary system. Enhanced understanding of the pathogenic mechanisms underlying iCCA tumorigenesis and the discovery of appropriate therapeutic targets are imperative to improve patient outcomes. Here, we investigated the functions and regulations of solute carrier family 16 member 3 (SLC16A3), which has been reported to be a biomarker of poor prognosis in iCCA.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
Many cell types are involved in the regulation of cutaneous wound healing in diabetes. Clarifying the mechanism of cell-cell interactions is important for identifying therapeutic targets for diabetic cutaneous ulcers. The function of vascular endothelial cells in the cutaneous microenvironment is critical, and a decrease in their biological function leads directly to refractory wound healing.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
The homeobox (HOX) family has shown potential in adipose development and function, yet the specific HOX proteins fueling adipose thermogenesis remain elusive. In this study, we uncovered the novel function of HOXC4 in stimulating adipose thermogenesis. Our bioinformatic analysis indicated an enrichment of Hoxc4 co-expressed genes in metabolic pathways and linked HOXC4 polymorphisms to metabolic parameters, suggesting its involvement in metabolic regulation.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
The First Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
Background: Sepsis and acute respiratory distress syndrome (ARDS) are common inflammatory conditions in intensive care, with ARDS significantly increasing mortality in septic patients. PANoptosis, a newly discovered form of programmed cell death involving multiple cell death pathways, plays a critical role in inflammatory diseases. This study aims to elucidate the PANoptosis-related genes (PRGs) and their involvement in the progression of sepsis to ARDS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!