Substantial short- and long-term health effect due to PM and the constituents even under future emission reductions in China.

Sci Total Environ

Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, and Laoshan Laboratory, Qingdao 266100, China. Electronic address:

Published: May 2023

Heavy pollution events of fine particulate matter (PM) frequently occur in China, seriously affecting the human health. However, how meteorological factors and anthropogenic emissions affect PM and the major constituents, as well as the subsequent health effect, remains unclear. Here, based on regional climate and air quality models Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ), the PM and major constituents in China at present and mid-century under the carbon neutral scenario Shared Socioeconomic Pathways (SSP)1-2.6 are simulated. Due to anthropogenic emission reduction, concentrations of PM and the constituents decrease substantially in SSP1-2.6. The long-term exposure premature deaths at present are 2.23 million per year in mainland China, which is projected to increase by 76 % under SSP1-2.6 despite emission reduction, primarily attributable to aging which strikingly offsets the effect of air quality improvement. The number of annual premature deaths resulting from short-term exposure is 228,104 in mainland China at present, which is projected to decrease in the future. Using North China Plain as an example, we identify that among the major constituents of PM, organic carbon leads to the most short-term exposure deaths considering the largest exposure-response coefficient. Regarding the abnormally meteorological conditions, we find, relative to low relative humidity (RH) and non-stagnation, the compound events, defined as concurrence of high RH and atmospheric stagnation, exhibit an amplified role inducing larger premature deaths compared to the additive effect of the individual event of high RH and atmospheric stagnation. This nonlinear effect occurs at both present and future, but diminished in future due to emission reductions. Our study highlights the importance of considering both the long- and short-term premature deaths associated with PM and the constituents, as well as the critical effect of extreme weather events.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.162433DOI Listing

Publication Analysis

Top Keywords

premature deaths
16
major constituents
12
air quality
12
future emission
8
emission reductions
8
constituents well
8
emission reduction
8
mainland china
8
china projected
8
short-term exposure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!